ZTE Communications ›› 2025, Vol. 23 ›› Issue (2): 46-59.DOI: 10.12142/ZTECOM.202502006
• Special Topic • Previous Articles Next Articles
LIU Xingchen1, SUN Shu1(), TAO Meixia1, KAUSHIK Aryan2, YAN Hangsong3
Received:
2025-04-09
Online:
2025-06-25
Published:
2025-06-10
Contact:
SUN Shu
About author:
LIU Xingchen received his BS degree in information engineering from Southeast University, China in 2022, and MS degree in information and communication engineering from Shanghai Jiao Tong University, China in 2025. His research interests include ray tracing, channel modeling, and the application of artificial intelligence in wireless communications.Supported by:
LIU Xingchen, SUN Shu, TAO Meixia, KAUSHIK Aryan, YAN Hangsong. Channel Knowledge Maps for 6G Wireless Networks: Construction, Applications, and Future Challenges[J]. ZTE Communications, 2025, 23(2): 46-59.
[1] | JIANG W, HAN B, HABIBI M A, et al. The road towards 6G: a comprehensive survey [J]. IEEE open journal of the communications society, 2021, 2: 334–366 |
[2] | WANG C X, YOU X H, GAO X Q, et al. On the road to 6G: visions, requirements, key technologies, and testbeds [J]. IEEE communications surveys & tutorials, 2023, 25(2): 905–974. DOI: 10.1109/COMST.2023.3249835 |
[3] | SINGH R, KAUSHIK A, SHIN W, et al. Towards 6G evolution: three enhancements, three innovations, and three major challenges [EB/OL]. (2024-02-16) [2025-03-25]. |
[4] | ALSABAH M, NASER M A, MAHMMOD B M, et al. 6G wireless communications networks: a comprehensive survey [J]. IEEE access, 2021, 9: 148191–148243 |
[5] | WANG Z, ZHANG J Y, DU H Y, et al. A tutorial on extremely large-scale MIMO for 6G: fundamentals, signal processing, and applications [J]. IEEE communications surveys & tutorials, 2024, 26(3): 1560–1605. DOI: 10.1109/COMST.2023.3349276 |
[6] | WANG J, WANG C X, HUANG J, et al. 6G THz propagation channel characteristics and modeling: recent developments and future challenges [J]. IEEE communications magazine, 2024, 62(2): 56–62. DOI: 10.1109/MCOM.001.2200403 |
[7] | SERGHIOU D, KHALILY M, BROWN T W C, et al. Terahertz channel propagation phenomena, measurement techniques and modeling for 6G wireless communication applications: a survey, open challenges and future research directions [J]. IEEE communications surveys & tutorials, 2022, 24(4): 1957–1996 |
[8] | MAHMOOD M R, MATIN M A, SARIGIANNIDIS P, et al. A comprehensive review on artificial intelligence/machine learning algorithms for empowering the future IoT toward 6G era [J]. IEEE access, 2022, 10: 87535–87562 |
[9] | ZENG Y, XU X. Toward environment-aware 6G communications via channel knowledge map [J]. IEEE wireless communications, 2021, 28(3): 84–91. DOI: 10.1109/MWC.001.2000327 |
[10] | GIORDANI M, POLESE M, ROY A, et al. A tutorial on beam management for 3GPP NR at mmWave frequencies [J]. IEEE communications surveys and tutorials, 2019, 21(1): 173–196. DOI: 10.1109/COMST.2018.2869411 |
[11] | ALKHATEEB A, AYACH O EL, LEUS G, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems [J]. IEEE journal of selected topics in signal processing, 2014, 8(5): 831–846. DOI: 10.1109/JSTSP.2014.2334278 |
[12] | NI K S, NGUYEN T Q. An adaptable k-nearest neighbors algorithm for MMSE image interpolation [J]. IEEE transactions on image processing, 2009, 18(9): 1976–1987. DOI: 10.1109/TIP.2009.2023706 |
[13] | DALL’ANESE E, KIM S J, GIANNAKIS G B. Channel gain map tracking via distributed Kriging [J]. IEEE transactions on vehicular technology, 2011, 60(3): 1205–1211 |
[14] | AKHPASHEV R V, ANDREEV A V. COST 231 Hata adaptation model for urban conditions in LTE networks [C]//The 17th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). IEEE, 2016: 64–66. DOI: 10.1109/EDM.2016.7538693 |
[15] | YUN Z Q, ISKANDER M F. Ray tracing for radio propagation modeling: principles and applications [J]. IEEE access, 2015, 3: 1089–1100 |
[16] | XU Z D, HUANG B Q, JIA B. An efficient radio map learning scheme based on kernel density function [J]. IEEE transactions on vehicular technology, 2021, 70(12): 13315–13324. DOI: 10.1109/TVT.2021.3121470 |
[17] | KIM S J, DALL’ANESE E, GIANNAKIS G B. Cooperative spectrum sensing for cognitive radios using Kriged Kalman filtering [J]. IEEE journal of selected topics in signal processing, 2011, 5(1): 24–36. DOI: 10.1109/JSTSP.2010.2053016 |
[18] | GUTIERREZ-ESTEVEZ D M, AKYILDIZ I F, FADEL E A. Spatial coverage cross-tier correlation analysis for heterogeneous cellular networks [J]. IEEE transactions on vehicular technology, 2014, 63(8): 3917–3926. DOI: 10.1109/TVT.2014.2306260 |
[19] | JAYAWICKRAMA B A, DUTKIEWICZ E, FANG G, et al. Downlink power allocation algorithm for licence-exempt LTE systems using Kriging and compressive sensing based spectrum cartography [C]//Global Communications Conference (GLOBECOM). IEEE, 2013: 3766–3771. DOI: 10.1109/GLOCOM.2013.6831659 |
[20] | SUN H, CHEN J T. Propagation map reconstruction via interpolation assisted matrix completion [J]. IEEE transactions on signal processing, 2022, 70: 6154–6169. DOI: 10.1109/TSP.2022.3230332 |
[21] | ZHANG G Y, FU X, WANG J, et al. Spectrum cartography via coupled block-term tensor decomposition [J]. IEEE transactions on signal processing, 2020, 68: 3660–3675. DOI: 10.1109/TSP.2020.2993530 |
[22] | SUN H, CHEN J T. Grid optimization for matrix-based source localization under inhomogeneous sensor topology [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 5110–5114. DOI: 10.1109/ICASSP39728.2021.9414100 |
[23] | MAJDISOVA Z, SKALA V. Radial basis function approximations: comparison and applications [J]. Applied mathematical modelling, 2017, 51: 728–743. DOI: 10.1016/j.apm.2017.07.033 |
[24] | JANG K J, PARK S, KIM J, et al. Path loss model based on machine learning using multi-dimensional Gaussian process regression [J]. IEEE access, 2022, 10: 115061–115073 |
[25] | WANG X Y, WANG X Y, MAO S W, et al. DeepMap: deep Gaussian process for indoor radio map construction and location estimation [C]//Global Communications Conference (GLOBECOM). IEEE, 2018: 1–7. DOI: 10.1109/GLOCOM.2018.8647266 |
[26] | KELLER W, BORKOWSKI A. Thin plate spline interpolation [J]. Journal of geodesy, 2019, 93(9): 1251–1269. DOI: 10.1007/s00190-019-01240-2 |
[27] | SHAKIR Z, AL-THAEDAN A, ALSABAH R, et al. Performance evaluation for RF propagation models based on data measurement for LTE networks [J]. International journal of information technology, 2022, 14(5): 2423–2428. DOI: 10.1007/s41870-022-01006-8 |
[28] | BLASZCZYSZYN B, KARRAY M K. Quality of service in wireless cellular networks subject to log-normal shadowing [J]. IEEE transactions on communications, 2013, 61(2): 781–791. DOI: 10.1109/TCOMM.2012.120512.110673 |
[29] | YAMADA W, SASAKI M, KITA N. Extended Walfisch-Bertoni propagation model to cover short range and millimeter-wave bands [J]. Radio science, 2021, 56(3): e2020RS007161. DOI: 10.1029/2020RS007161 |
[30] | KIM K W, KWON H, PARK S. Line-of-sight probability in urban environments representing deterministic grids [J]. IEEE transactions on antennas and propagation, 2025, 73(3): 1792–1804. DOI: 10.1109/TAP.2024.3513540 |
[31] | SABOOR A, CUI Z Z, VINOGRADOV E, et al. Air-to-ground channel model for pedestrian and vehicle users in general urban environments [J]. IEEE antennas and wireless propagation letters, 2025, 24(1): 227–231. DOI: 10.1109/LAWP.2024.3492507 |
[32] | JU S H, RAPPAPORT T S. Sub-terahertz spatial statistical MIMO channel model for urban microcells at 142 GHz [C]//Global Communications Conference (GLOBECOM). IEEE, 2021: 1–6. DOI: 10.1109/GLOBECOM46510.2021.9685929 |
[33] | ZHENG Y R, XIAO C S. Simulation models with correct statistical properties for Rayleigh fading channels [J]. IEEE transactions on communications, 2003, 51(6): 920–928. DOI: 10.1109/TCOMM.2003.813259 |
[34] | PATZOLD M, KILLAT U, LAUE F, et al. On the statistical properties of deterministic simulation models for mobile fading channels [J]. IEEE transactions on vehicular technology, 1998, 47(1): 254–269. DOI: 10.1109/25.661052 |
[35] | HAGNESS S C, TAFLOVE A, GEDNEY S D. Finite-difference time-domain methods [M]//Numerical methods in electromagnetics. Amsterdam: Elsevier, 2005: 199–315. DOI: 10.1016/s1570-8659(04)13003-2 |
[36] | SARKAR T K, JI Z, KIM K, et al. A survey of various propagation models for mobile communication [J]. IEEE antennas and propagation magazine, 2003, 45(3): 51–82. DOI: 10.1109/MAP.2003.1232163 |
[37] | ZHANG X, SHU X J, ZHANG B W, et al. Cellular network radio propagation modeling with deep convolutional neural networks [C]//The 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2020: 2378-2386. DOI: 10.1145/3394486.3403287 |
[38] | SARKAR S, MANSHAEI M H, KRUNZ M. RADIANCE: radio-frequency adversarial deep-learning inference for automated network coverage estimation [C]//IEEE Global Communications Conference. IEEE, 2023: 832–837. DOI: 10.1109/GLOBECOM54140.2023.10437767 |
[39] | JAENSCH F, CAIRE G, DEMIR B, et al. Radio map estimation: an open dataset with directive transmitter antennas and initial experiments [EB/OL]. (2024-01-12) [2025-03-25]. |
[40] | ZHANG F B, ZHOU C, BRENNAN C, et al. A radio wave propagation modeling method based on high-precision 3-D mapping in urban scenarios [J]. IEEE transactions on antennas and propagation, 2024, 72(3): 2712–2722. DOI: 10.1109/TAP.2024.3355502 |
[41] | LING H, CHOU R C, LEE S W. Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity [J]. IEEE transactions on antennas and propagation, 1989, 37(2): 194–205. DOI: 10.1109/8.18706 |
[42] | LIANG G, BERTONI H L. A new approach to 3-D ray tracing for propagation prediction in cities [J]. IEEE transactions on antennas and propagation, 1998, 46(6): 853–863. DOI: 10.1109/8.686774 |
[43] | HOPPE R, WÖLFLE G, LANDSTORFER F. Fast 3D ray tracing for the planning of microcells by intelligent preprocessing of the database [C]//The 3rd European Personal and Mobile Communications Conference (EPMCC), 1999 |
[44] | LEVIE R, YAPAR Ç, KUTYNIOK G, et al. RadioUNet: fast radio map estimation with convolutional neural networks [J]. IEEE transactions on wireless communications, 2021, 20(6): 4001–4015. DOI: 10.1109/TWC.2021.3054977 |
[45] | MALLIK M, KHARBECH S, MAZLOUM T, et al. EME-net: a U-net-based indoor EMF exposure map reconstruction method [C]//The 16th European Conference on Antennas and Propagation (EuCAP). IEEE, 2022: 1–5 |
[46] | CHEN Q, YANG J J, HUANG M, et al. ACT-GAN: radio map construction based on generative adversarial networks with ACT blocks [J]. IET communications, 2024, 18(19): 1541–1550. DOI: 10.1049/cmu2.12846 |
[47] | CHEN J Y, GAO R F, WANG J, et al. Channel gain map construction based on subregional learning and prediction [J]. IEEE transactions on vehicular technology, 2025, (99): 1–6. DOI: 10.1109/TVT.2025.3542581 |
[48] | LI Z, CAO J N, WANG H W, et al. Sparsely self-supervised generative adversarial nets for radio frequency estimation [J]. IEEE journal on selected areas in communications, 2019, 37(11): 2428–2442. DOI: 10.1109/JSAC.2019.2933779 |
[49] | ZHANG S Y, WIJESINGHE A, DING Z. RME-GAN: a learning framework for radio map estimation based on conditional generative adversarial network [J]. IEEE Internet of Things journal, 2023, 10(20): 18016–18027. DOI: 10.1109/JIOT.2023.3278235 |
[50] | WANG Y F, SUN S, LIU N, et al. Two-stage radio map construction with real environments and sparse measurements [J]. IEEE wireless communications letters, 2025, 14(4): 969–973. DOI: 10.1109/LWC.2025.3528512 |
[51] | ZHANG Z Z, ZHU G X, CHEN J T, et al. Fast and accurate cooperative radio map estimation enabled by GAN [EB/OL]. [2025-03-25]. |
[52] | KRIJESTORAC E, HANNA S, CABRIC D. Spatial signal strength prediction using 3D maps and deep learning [C]//International Conference on Communications. IEEE, 2021: 1–6. DOI: 10.1109/ICC42927.2021.9500970 |
[53] | SALLOUHA H, SARKAR S, KRIJESTORAC E, et al. REM-U-Net: deep learning based agile REM prediction with energy-efficient cell-free use case [J]. IEEE open journal of signal processing, 2024, 5: 750–765 |
[54] | LEE J H, CHOI J S, KIM S C. Cell coverage analysis of 28 GHz millimeter wave in urban microcell environment using 3-D ray tracing [J]. IEEE transactions on antennas and propagation, 2018, 66(3): 1479–1487. DOI: 10.1109/TAP.2018.2797531 |
[55] | HUR S, BAEK S, KIM B, et al. Proposal on millimeter-wave channel modeling for 5G cellular system [J]. IEEE journal of selected topics in signal processing, 2016, 10(3): 454–469. DOI: 10.1109/JSTSP.2016.2527364 |
[56] | NGUYEN H C, MACCARTNEY G R, THOMAS T, et al. Evaluation of empirical ray-tracing model for an urban outdoor scenario at 73 GHz E-band [C]//The 80th Vehicular Technology Conference (VTC2014-Fall). IEEE, 2014: 1–6. DOI: 10.1109/VTCFall.2014.6965971 |
[57] | CHARBONNIER R, LAI C, TENOUX T, et al. Calibration of ray-tracing with diffuse scattering against 28-GHz directional urban channel measurements [J]. IEEE transactions on vehicular technology, 2020, 69(12): 14264–14276. DOI: 10.1109/TVT.2020.3038620 |
[58] | PRIEBE S, KANNICHT M, JACOB M, et al. Ultra-broadband indoor channel measurements and calibrated ray tracing propagation modeling at THz frequencies [J]. Journal of communications and networks, 2013, 15(6): 547–558 |
[59] | ZHOU A D, HUANG J, SUN J, et al. 60 GHz channel measurements and ray tracing modeling in an indoor environment [C]//The 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2017: 1–6. DOI: 10.1109/WCSP.2017.8170934 |
[60] | KANHERE O, PODDAR H, RAPPAPORT T S. Calibration of NYURay for ray tracing using 28, 73, and 142 GHz channel measurements conducted in indoor, outdoor, and factory scenarios [J]. IEEE transactions on antennas and propagation, 2025, 73(1): 405–420 |
[61] | OREKONDY T, KUMAR P, KADAMBI S, et al. Winert: towards neural ray tracing for wireless channel modelling and differentiable simulations[EB/OL]. [2025-03-02]. |
[62] | JIANG S F, QU Q, PAN X Q, et al. Learnable wireless digital twins: Reconstructing electromagnetic field with neural representations [EB/OL]. (2024-09-04) [2025-03-02]. |
[63] | QI Y H, KOBAYASHI H, SUDA H. Analysis of wireless geolocation in a non-line-of-sight environment [J]. IEEE transactions on wireless communications, 2006, 5(3): 672–681. DOI: 10.1109/TWC.2006.1611097 |
[64] | KAUSHIK A, SINGH R, DAYARATHNA S, et al. Toward integrated sensing and communications for 6G: key enabling technologies, standardization, and challenges [J]. IEEE communications standards magazine, 2024, 8(2): 52–59. DOI: 10.1109/MCOMSTD.0007.2300043 |
[65] | YAPAR Ç, LEVIE R, KUTYNIOK G, et al. Real-time localization using radio maps [EB/OL]. (2020-06-09) [2025-03-02]. |
[66] | ZENG S Q, XU X L, ZENG Y, et al. CKM-assisted LoS identification and predictive beamforming for cellular-connected UAV [C]//International Conference on Communications. IEEE, 2023: 2877–2882. DOI: 10.1109/ICC45041.2023.10278702 |
[67] | ZHANG B T, CHEN J T. Constructing radio maps for UAV communications via dynamic resolution virtual obstacle maps [C]//The 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2020: 1–5. DOI: 10.1109/SPAWC48557.2020.9154223 |
[68] | ZHANG S W, ZHANG R. Radio map-based 3D path planning for cellular-connected UAV [J]. IEEE transactions on wireless communications, 2021, 20(3): 1975–1989. DOI: 10.1109/TWC.2020.3037916 |
[69] | HUANG Y W, MO X P, XU J, et al. Online maneuver design for UAV-enabled NOMA systems via reinforcement learning [C]//Wireless Communications and Networking Conference (WCNC). IEEE, 2020: 1–6. DOI: 10.1109/WCNC45663.2020.9120492 |
[70] | ZENG Y, XU X L, JIN S, et al. Simultaneous navigation and radio mapping for cellular-connected UAV with deep reinforcement learning [J]. IEEE transactions on wireless communications, 2021, 20(7): 4205–4220. DOI: 10.1109/TWC.2021.3056573 |
[71] | WU D, ZENG Y, JIN S, et al. Environment-aware hybrid beamforming by leveraging channel knowledge map [J]. IEEE transactions on wireless communications, 2024, 23(5): 4990–5005. DOI: 10.1109/TWC.2023.3323941 |
[72] | YANG B, WANG W, ZHANG W. Cell-free massive MIMO beamforming based on radio map [C]//International Conference on Communications. IEEE, 2024: 4506–4511. DOI: 10.1109/ICC51166.2024.10622568 |
[73] | XIA X C, XU K, XIE W, et al. Multiple aerial base station deployment and user association based on binary radio map [J]. IEEE Internet of Things journal, 2023, 10(19): 17206–17219. DOI: 10.1109/JIOT.2023.3272555 |
[74] | GANAME H, LIU Y Z, GHAZZAI H, et al. 5G base station deployment perspectives in millimeter wave frequencies using meta-heuristic algorithms [J]. Electronics, 2019, 8(11): 1318. DOI: 10.3390/electronics8111318 |
[75] | PENG H S, KALLEHAUGE T, TAO M X, et al. Fast transmission control adaptation for URLLC via channel knowledge map and meta-learning [J]. IEEE Internet of Things journal, 2025, 12(9): 13097–13111. DOI: 10.1109/JIOT.2025.3552413 |
[76] | KAUSHIK A, SINGH R, et al. Empowering robotic systems with integrated sensing and communications in the 6G era [EB/OL]. (2025-02-11) [2025-03-25]. |
[1] | AI Bo, ZHANG Yuxin, YANG Mi, HE Ruisi, GUO Rongge. A Machine Learning-Based Channel Data Enhancement Platform for Digital Twin Channels [J]. ZTE Communications, 2025, 23(2): 20-30. |
[2] | LU Mengyuan, BAI Lu, HAN Zengrui, HUANG Ziwei, LU Shiliang, CHENG Xiang. 6G Digital Twin Enabled Channel Modeling for Beijing Central Business District [J]. ZTE Communications, 2025, 23(2): 31-45. |
[3] | CHEN Peng, LIU Yajuan, WEI Wentong, WANG Wei, LI Na. Air-to-Ground Channel Measurement and Modeling for Low-Altitude UAVs: A Survey [J]. ZTE Communications, 2025, 23(2): 60-75. |
[4] | HE Shiwen, PENG Shilin, DONG Haolei, WANG Liangpeng, AN Zhenyu. Exploration of NWDAF Development Architecture for 6G AI-Native Networks [J]. ZTE Communications, 2025, 23(1): 45-52. |
[5] | DU Ruolin, WEI Zhiqiang, YANG Zai. Integrated Sensing and Communication: Who Benefits More? [J]. ZTE Communications, 2024, 22(3): 37-47. |
[6] | YANG Bei, LIANG Xin, LIU Shengnan, JIANG Zheng, ZHU Jianchi, SHE Xiaoming. Intelligent 6G Wireless Network with Multi-Dimensional Information Perception [J]. ZTE Communications, 2023, 21(2): 3-10. |
[7] | LU Haitao, YAN Xincheng, ZHOU Qiang, DAI Jiulong, LI Rui. Key Intrinsic Security Technologies in 6G Networks [J]. ZTE Communications, 2022, 20(4): 22-31. |
[8] | WANG Pengfei, SONG Wei, SUN Geng, WEI Zongzheng, ZHANG Qiang. Air-Ground Integrated Low-Energy Federated Learning for Secure 6G Communications [J]. ZTE Communications, 2022, 20(4): 32-40. |
[9] | CUI Ziqi, WANG Gongpu, WANG Zhigang, AI Bo, XIAO Huahua. Symbiotic Radio Systems: Detection and Performance Analysis [J]. ZTE Communications, 2022, 20(3): 93-98. |
[10] | HOU Xiaolin, LI Xiang, WANG Xin, CHEN Lan, SUYAMA Satoshi. Some Observations and Thoughts about Reconfigurable Intelligent Surface Application for 5G Evolution and 6G [J]. ZTE Communications, 2022, 20(1): 14-20. |
[11] | YUAN Yifei, GU Qi, WANG Anna, WU Dan, LI Ya. Recent Progress in Research and Development of Reconfigurable Intelligent Surface [J]. ZTE Communications, 2022, 20(1): 3-13. |
[12] | ZHANG Zhengquan, LIU Heng, WANG Qianli, FAN Pingzhi. A Survey on Low Complexity Detectors for OTFS Systems [J]. ZTE Communications, 2021, 19(4): 3-15. |
[13] | WU Huici, LI Hanjie, TAO Xiaofeng. Green Air-Ground Integrated Heterogeneous Network in 6G Era [J]. ZTE Communications, 2021, 19(1): 39-47. |
[14] | GAO Xiang, MUHAMMAD Saqlain, CAO Xiaoxiao, WANG Shiwei, LIU Kexin, ZHANG Hangkai, YU Xianbin. Towards Converged Millimeter-Wave/TerahertzWireless Communication and Radar Sensing [J]. ZTE Communications, 2020, 18(1): 73-82. |
[15] | GONG Jie, ZHOU Sheng. Exploiting Correlations of Energy and Information: A New Paradigm of Energy Harvesting Communications [J]. ZTE Communications, 2018, 16(1): 18-25. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 14
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||