ZTE Communications ›› 2025, Vol. 23 ›› Issue (2): 31-45.DOI: 10.12142/ZTECOM.202502005
• Special Topic • Previous Articles Next Articles
LU Mengyuan1,2, BAI Lu1,3,4(), HAN Zengrui5, HUANG Ziwei5, LU Shiliang1,2, CHENG Xiang5
Received:
2025-01-20
Online:
2025-06-25
Published:
2025-06-10
About author:
LU Mengyuan received her BS degree in engineering from the School of Software, Shandong University, China in 2024. She is currently pursuing her master's degree at the same institution. Her research interests focus on AI-based 6G vehicular communications.Supported by:
LU Mengyuan, BAI Lu, HAN Zengrui, HUANG Ziwei, LU Shiliang, CHENG Xiang. 6G Digital Twin Enabled Channel Modeling for Beijing Central Business District[J]. ZTE Communications, 2025, 23(2): 31-45.
1 | CHENG X, DUAN D L, GAO S J, et al. Integrated sensing and communications (ISAC) for vehicular communication networks (VCN) [J]. IEEE internet of things journal, 2022, 9(23): 23441–23451. DOI: 10.1109/JIOT.2022.3191386 |
2 | LIN X Q, KUNDU L, DICK C, et al. 6G digital twin networks: from theory to practice [J]. IEEE communications magazine, 2023, 61(11): 72–78. DOI: 10.1109/MCOM.001.2200830 |
3 | ALKHATEEB A, JIANG S F, CHARAN G. Real-time digital twins: vision and research directions for 6G and beyond [J]. IEEE communications magazine, 2023, 61(11): 128–134. DOI: 10.1109/MCOM.001.2200866 |
4 | HE D P, GUAN K, YAN D, et al. Physics and AI-based digital twin of multi-spectrum propagation characteristics for communication and sensing in 6G and beyond [J]. IEEE journal on selected areas in communications, 2023, 41(11): 3461–3473. DOI: 10.1109/JSAC.2023.3310108 |
5 | JIANG S F, ALKHATEEB A. Digital twin aided massive MIMO: CSI compression and feedback [C]//Proc. IEEE International Conference on Communications (ICC). IEEE, 2024: 3586–3591. DOI: 10.1109/icc51166.2024.10622316 |
6 | XIE W L, QI F, LIU L, et al. Radar imaging based UAV digital twin for wireless channel modeling in mobile networks [J]. IEEE journal on selected areas in communications, 2023, 41(11): 3702–3710. DOI: 10.1109/JSAC.2023.3310085 |
7 | DING C, HO I W. Digital-twin-enabled city-model-aware deep learning for dynamic channel estimation in urban vehicular environments [J]. IEEE transactions on green communications and networking, 2022, 6(3): 1604–1612. DOI: 10.1109/TGCN.2022.3173414 |
8 | ALOBAIDY H A H, SINGH M JIT, BEHJATI M, et al. Wireless transmissions, propagation and channel modelling for IoT technologies: applications and challenges [J]. IEEE access, 2022, 10: 24095–24131. DOI: 10.1109/access.2022.3151967 |
9 | CHEN Y, LI Y B, HAN C, et al. Channel measurement and ray-tracing-statistical hybrid modeling for low-terahertz indoor communications [J]. IEEE transactions on wireless communications, 2021, 20(12): 8163–8176. DOI: 10.1109/TWC.2021.3090781 |
10 | ZHANG Y X, HE R S, AI B, et al. Generative adversarial networks based digital twin channel modeling for intelligent communication networks [J]. China communications, 2023, 20(8): 32–43 |
11 | YU Z H, LV X Z, RUI H, et al. Digital twin channel: a data-driven continuous trajectory modeling [C]//Proc. IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI). IEEE, 2021: 302–305. DOI: 10.1109/dtpi52967.2021.9540134 |
12 | REMCOM. Wireless InSite [EB/OL]. (2017-01-01)[2024-02-01]. |
13 | SHAH S, DEY D, LOVETT C, et al. AirSim: high-fidelity visual and physical simulation for autonomous vehicles [M]//Field and service robotics. Cham, Switzerland: Springer International Publishing, 2017: 621–635. DOI: 10.1007/978-3-319-67361-5_40 |
14 | SCHUBERT E, SANDER J, ESTER M, et al. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN [J]. ACM transactions on database systems, 2017, 42(3): 1–21. DOI: 10.1145/3068335 |
15 | GUTIERREZ C A, PATZOLD M, DAHECH W, et al. A non-WSSUS mobile-to-mobile channel model assuming velocity variations of the mobile stations [C]//Proc. IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2017: 1–6. DOI: 10.1109/WCNC.2017.7925795 |
16 | JAECKEL S, RASCHKOWSKI L, WU S B, et al. An explicit ground reflection model for mm-wave channels [C]//Proc. IEEE Wireless Communications and Networking Conference Workshops (WCNCW). IEEE, 2017: 1–5. DOI: 10.1109/WCNCW.2017.7919093 |
17 | BAI L, HUANG Z W, DU H H, et al. A 3-D nonstationary wideband V2V GBSM with UPAs for massive MIMO wireless communication systems [J]. IEEE Internet of Things journal, 2021, 8(24): 17622–17638. DOI: 10.1109/JIOT.2021.3081816 |
18 | International Telecommunication Union. Guidelines for evaluation of radio interface technologies for IMT-2020, preliminary draft new report ITU-R M, document R15-WP5D-170613-TD-0332 [R]. 2017 |
19 | HANEDA K, NGUYEN S L H, KARTTUNEN A. Measurement results and final mmMAGIC channel models, Rep. H2020-ICT-671650-mmMAGIC/D2.2 [R]. 2017 |
20 | BAI L, HUANG Z W, LI Y R, et al. A 3D cluster-based channel model for 5G and beyond vehicle-to-vehicle massive MIMO channels [J]. IEEE transactions on vehicular technology, 2021, 70(9): 8401–8414. DOI: 10.1109/TVT.2021.3100389 |
21 | KYOSTI P, MEINILA J, HENTILA L, et al. WINNER II channel models, version 1.1 [R]. 2007. |
22 | MARTÍNEZ À O, EGGERS P, DE CARVALHO E. Geometry-based stochastic channel models for 5G: extending key features for massive MIMO [C]//Proc. IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE, 2016: 1–6. DOI: 10.1109/PIMRC.2016.7794648 |
23 | PÄTZOLD M. Mobile radio channels [M]. 2nd ed. Chichester, UK: Wiley, 2012 |
24 | WANG C-X, LV Z, CHEN Y, et al. A complete study of space-time-frequency statistical properties of the 6G pervasive channel model [J]. IEEE transactions on communications, 2023, 71(12): 7273–7287. DOI: 10.1109/TCOMM.2023.3307144 |
[1] | AI Bo, ZHANG Yuxin, YANG Mi, HE Ruisi, GUO Rongge. A Machine Learning-Based Channel Data Enhancement Platform for Digital Twin Channels [J]. ZTE Communications, 2025, 23(2): 20-30. |
[2] | LIU Xingchen, SUN Shu, TAO Meixia, KAUSHIK Aryan, YAN Hangsong. Channel Knowledge Maps for 6G Wireless Networks: Construction, Applications, and Future Challenges [J]. ZTE Communications, 2025, 23(2): 46-59. |
[3] | CHEN Peng, LIU Yajuan, WEI Wentong, WANG Wei, LI Na. Air-to-Ground Channel Measurement and Modeling for Low-Altitude UAVs: A Survey [J]. ZTE Communications, 2025, 23(2): 60-75. |
[4] | TANG Xingyang, SUI Jia, FU Jiahui, YANG Kaiwen, ZHAO Zhipeng. A Wide Passband Frequency Selective Surface with Angular Stability [J]. ZTE Communications, 2025, 23(1): 78-84. |
[5] | GU Zhenqian, YANG Zhen, ZHA Lulu, HU Junhui, CHI Nan, SHEN Chao. Ultra-Low Linewidth Frequency Stabilized Integrated Lasers: A New Frontier in Integrated Photonics [J]. ZTE Communications, 2024, 22(4): 29-39. |
[6] | HUANG Rui, LI Huilin, ZHANG Yongmin. Efficient Bandwidth Allocation and Computation Configuration in Industrial IoT [J]. ZTE Communications, 2023, 21(1): 55-63. |
[7] | YI Xueya, CHEN Jixin, CHEN Peng, NING Dongfang, YU Chao. Derivative-Based Envelope Design Technique for Wideband Envelope Tracking Power Amplifier with Digital Predistortion [J]. ZTE Communications, 2022, 20(S1): 22-26. |
[8] | LIAN Meng, GU Rentao, JI Yuefeng, WANG Dajiang, LI Hongbiao. Adaptability Analysis of Fluctuating Traffic for IP Switching and Optical Switching [J]. ZTE Communications, 2021, 19(1): 82-90. |
[9] | GAO Yin, LI Dapeng, HAN Jiren, LIU Zhuang, LIU Yang. RAN Centric Data Collection for New Radio [J]. ZTE Communications, 2019, 17(3): 23-30. |
[10] | Amulya Karaadi, Is-Haka Mkwawa, Lingfen Sun. How to Manage Multimedia Traffic: Based on QoE or QoT? [J]. ZTE Communications, 2018, 16(3): 23-29. |
[11] | DONG Zhenjiang, LUO Shengmei, WEN Tao, ZHANG Fayang, LI Lingjuan. Random Forest Based Very Fast Decision Tree Algorithm for Data Stream [J]. ZTE Communications, 2017, 15(S2): 52-57. |
[12] | Stefano Buzzi, Carmen D’Andrea. Massive MIMO 5G Cellular Networks: mm-Wave vs. μ-Wave Frequencies [J]. ZTE Communications, 2017, 15(S1): 41-49. |
[13] | YIN Xuefeng, ZHANG Nan, Stephen Wang, CHENG Xiang. Measurement-Based Spatial-Consistent Channel Modeling Involving Clusters of Scatterers [J]. ZTE Communications, 2017, 15(1): 28-34. |
[14] | Seyyed Hamed Fouladi, Raúl Chávez-Santiago, Pål Ander Floor, Ilangko Balasingham, and Tor A. Ramstad. Sensing, Signal Processing, and Communication for WBANs [J]. ZTE Communications, 2014, 12(3): 3-12. |
[15] | Wei Chen, Jérôme Fournier, Marcus Barkowsky, and Patrick Le Callet. Methodologies for Assessing 3D QoE: Standards and Explorative Studies [J]. ZTE Communications, 2013, 11(1): 2-10. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 19
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 53
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||