ZTE Communications ›› 2023, Vol. 21 ›› Issue (1): 55-63.DOI: 10.12142/ZTECOM.202301007
• Research Paper • Previous Articles
HUANG Rui, LI Huilin, ZHANG Yongmin()
Received:
2022-12-01
Online:
2023-03-25
Published:
2024-03-15
About author:
HUANG Rui received his BS degree in computer science from Wuhan University of Technology, China. He is currently pursuing his master's degree with the School of Computer Science and Engineering, Central South University, China. His research interests include mobile edge computing and network optimization.Supported by:
HUANG Rui, LI Huilin, ZHANG Yongmin. Efficient Bandwidth Allocation and Computation Configuration in Industrial IoT[J]. ZTE Communications, 2023, 21(1): 55-63.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202301007
Figure 5 CDF of computation resource requirement of each IoT device and total computation resources requirement under two situations: 1) optimal bandwidth resources allocation decided by EBACC; 2) allocating bandwidth resources equally to all IoT devices.
1 | ADI E, ANWAR A, BAIG Z, et al. Machine learning and data analytics for the IoT [J]. Neural computing and applications, 2020, 32(20): 16205–16233. DOI: 10.1007/s00521-020-04874-y |
2 | LEE J, STANLEY M, SPANIAS A, et al. Integrating machine learning in embedded sensor systems for Internet-of-Things applications [C]//IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, 2016: 290–294. DOI: 10.1109/ISSPIT.2016.7886051 |
3 | LIU Y K, CANDELL R, KASHEF M, et al. Dimensioning wireless use cases in Industrial Internet of Things [C]//14th IEEE International Workshop on Factory Communication Systems (WFCS). IEEE, 2018: 1–4 |
4 | LUO Y, DUAN Y, LI W F, et al. A novel mobile and hierarchical data transmission architecture for smart factories [J]. IEEE transactions on industrial informatics, 2018, 14(8): 3534–3546. DOI: 10.1109/TII.2018.2824324 |
5 | LIU Y K, KASHEF M, LEE K B, et al. Wireless network design for emerging IIoT applications: reference framework and use cases [J]. Proceedings of the IEEE, 2019, 107(6): 1166–1192. DOI: 10.1109/JPROC.2019.2905423 |
6 | SAVAZZI S, KIANOUSH S, RAMPA V, et al. A joint decentralized federated learning and communications framework for industrial networks [C]//IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). IEEE, 2020: 1–7. DOI: 10.1109/CAMAD50429.2020.9209305 |
7 | LONG N B, TRAN-DANG H, KIM D S. Energy-aware real-time routing for large-scale industrial Internet of Things [J]. IEEE Internet of Things journal, 2018, 5(3): 2190–2199. DOI: 10.1109/JIOT.2018.2827050 |
8 | JAGANNATH J, POLOSKY N, JAGANNATH A, et al. Machine learning for wireless communications in the Internet of Things: a comprehensive survey [J]. Ad hoc networks, 2019, 93: 101913. DOI: 10.1016/j.adhoc.2019.101913 |
9 | DING Z M, SHEN L F, CHEN H Y, et al. Energy-efficient relay-selection-based dynamic routing algorithm for IoT-oriented software-defined WSNs [J]. IEEE Internet of Things journal, 2020, 7(9): 9050–9065. DOI: 10.1109/JIOT.2020.3002233 |
10 | ZHAO R, WANG X J, XIA J J, et al. Deep reinforcement learning based mobile edge computing for intelligent Internet of Things [J]. Physical communication, 2020, 43: 101184. DOI: 10.1016/j.phycom.2020.101184 |
11 | KAUR K, GARG S, AUJLA G S, et al. Edge computing in the industrial Internet of Things environment: software-defined-networks-based edge-cloud interplay [J]. IEEE communications magazine, 2018, 56(2): 44–51. DOI: 10.1109/MCOM.2018.1700622 |
12 | ZHANG K, MAO Y M, LENG S P, et al. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks [J]. IEEE access, 2016, 4: 5896–5907. DOI: 10.1109/access.2016.2597169 |
13 | HONG Z C, CHEN W H, HUANG H W, et al. Multi-hop cooperative computation offloading for industrial IoT‐edge‐cloud computing environments [J]. IEEE transactions on parallel and distributed systems, 2019, 30(12): 2759–2774. DOI: 10.1109/TPDS.2019.2926979 |
14 | GAO G J, XIAO M J, WU J, et al. Auction-based VM allocation for deadline-sensitive tasks in distributed edge cloud [J]. IEEE transactions on services computing, 2021, 14(6): 1702–1716. DOI: 10.1109/TSC.2019.2902549 |
15 | MA X, WANG S G, ZHANG S, et al. Cost-efficient resource provisioning for dynamic requests in cloud assisted mobile edge computing [J]. IEEE transactions on cloud computing, 2021, 9(3): 968–980. DOI: 10.1109/TCC.2019.2903240 |
16 | YANG B, CAO X L, LI X F, et al. Mobile-edge-computing-based hierarchical machine learning tasks distribution for IIoT [J]. IEEE Internet of Things journal, 2020, 7(3): 2169–2180. DOI: 10.1109/JIOT.2019.2959035 |
17 | SUN C, SHRIVASTAVA A, SINGH S, et al. Revisiting unreasonable effectiveness of data in deep learning era [C]//IEEE International Conference on Computer Vision (ICCV). IEEE, 2017: 843–852. DOI: 10.1109/ICCV.2017.97 |
18 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 770–778. DOI: 10.1109/CVPR.2016.90 |
19 | HUANG J, RATHOD V, SUN C, et al. Speed/accuracy trade-offs for modern convolutional object detectors [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 3296–3297. DOI: 10.1109/CVPR.2017.351 |
20 | STRUBELL E, GANESH A, MCCALLUM A. Energy and policy considerations for deep learning in NLP [C]//57th Annual Meeting of the Association for Computational Linguistics. ACL, 2019: 3645–3650 |
21 | QU Y B, LIU J J. Computation offloading for mobile edge computing with accuracy guarantee [C]//ACM Turing Celebration Conference. ACM, 2019: 1–5. DOI: 10.1145/3321408.3321582 |
22 | LIN J, CHEN W M, LIN Y J, et al. MCUNet: tiny deep learning on IoT devices [C]//Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems. NIPSF, 2020: 11711–11722 |
23 | CHEN X, JIAO L, LI W Z, et al. Efficient multi-user computation offloading for mobile-edge cloud computing [J]. IEEE/ACM transactions on networking, 2016, 24(5): 2795–2808. DOI: 10.1109/TNET.2015.2487344 |
24 | CHIANG M, HANDE P, LAN T, et al. Power control in wireless cellular networks [J]. Foundations and trends in networking, 2008, 2(4): 381–533. DOI: 10.1561/1300000009 |
25 | XIAO M B, SHROFF N B, CHONG E K P. A utility-based power-control scheme in wireless cellular systems [J]. IEEE/ACM transactions on networking, 2003, 11(2): 210–221. DOI: 10.1109/TNET.2003.810314 |
26 | MIECH A, ZHUKOV D, ALAYRAC J B, et al. HowTo100M: learning a text-video embedding by watching hundred million narrated video clips [C]//IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019: 2630–2640. DOI: 10.1109/ICCV.2019.00272 |
27 | HUANG J W, BERRY R A, HONIG M L. Distributed interference compensation for wireless networks [J]. IEEE journal on selected areas in communications, 2006, 24(5): 1074–1084. DOI: 10.1109/JSAC.2006.872889 |
28 | BOYD S, VANDENBERGHE L. Convex Optimization [M]. Cambridge: UK: Cambridge University Press, 2004. DOI: 10.1017/cbo9780511804441 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||