1 |
ADI E, ANWAR A, BAIG Z, et al. Machine learning and data analytics for the IoT [J]. Neural computing and applications, 2020, 32(20): 16205–16233. DOI: 10.1007/s00521-020-04874-y
|
2 |
LEE J, STANLEY M, SPANIAS A, et al. Integrating machine learning in embedded sensor systems for Internet-of-Things applications [C]//IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE, 2016: 290–294. DOI: 10.1109/ISSPIT.2016.7886051
|
3 |
LIU Y K, CANDELL R, KASHEF M, et al. Dimensioning wireless use cases in Industrial Internet of Things [C]//14th IEEE International Workshop on Factory Communication Systems (WFCS). IEEE, 2018: 1–4
|
4 |
LUO Y, DUAN Y, LI W F, et al. A novel mobile and hierarchical data transmission architecture for smart factories [J]. IEEE transactions on industrial informatics, 2018, 14(8): 3534–3546. DOI: 10.1109/TII.2018.2824324
|
5 |
LIU Y K, KASHEF M, LEE K B, et al. Wireless network design for emerging IIoT applications: reference framework and use cases [J]. Proceedings of the IEEE, 2019, 107(6): 1166–1192. DOI: 10.1109/JPROC.2019.2905423
|
6 |
SAVAZZI S, KIANOUSH S, RAMPA V, et al. A joint decentralized federated learning and communications framework for industrial networks [C]//IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). IEEE, 2020: 1–7. DOI: 10.1109/CAMAD50429.2020.9209305
|
7 |
LONG N B, TRAN-DANG H, KIM D S. Energy-aware real-time routing for large-scale industrial Internet of Things [J]. IEEE Internet of Things journal, 2018, 5(3): 2190–2199. DOI: 10.1109/JIOT.2018.2827050
|
8 |
JAGANNATH J, POLOSKY N, JAGANNATH A, et al. Machine learning for wireless communications in the Internet of Things: a comprehensive survey [J]. Ad hoc networks, 2019, 93: 101913. DOI: 10.1016/j.adhoc.2019.101913
|
9 |
DING Z M, SHEN L F, CHEN H Y, et al. Energy-efficient relay-selection-based dynamic routing algorithm for IoT-oriented software-defined WSNs [J]. IEEE Internet of Things journal, 2020, 7(9): 9050–9065. DOI: 10.1109/JIOT.2020.3002233
|
10 |
ZHAO R, WANG X J, XIA J J, et al. Deep reinforcement learning based mobile edge computing for intelligent Internet of Things [J]. Physical communication, 2020, 43: 101184. DOI: 10.1016/j.phycom.2020.101184
|
11 |
KAUR K, GARG S, AUJLA G S, et al. Edge computing in the industrial Internet of Things environment: software-defined-networks-based edge-cloud interplay [J]. IEEE communications magazine, 2018, 56(2): 44–51. DOI: 10.1109/MCOM.2018.1700622
|
12 |
ZHANG K, MAO Y M, LENG S P, et al. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks [J]. IEEE access, 2016, 4: 5896–5907. DOI: 10.1109/access.2016.2597169
|
13 |
HONG Z C, CHEN W H, HUANG H W, et al. Multi-hop cooperative computation offloading for industrial IoT‐edge‐cloud computing environments [J]. IEEE transactions on parallel and distributed systems, 2019, 30(12): 2759–2774. DOI: 10.1109/TPDS.2019.2926979
|
14 |
GAO G J, XIAO M J, WU J, et al. Auction-based VM allocation for deadline-sensitive tasks in distributed edge cloud [J]. IEEE transactions on services computing, 2021, 14(6): 1702–1716. DOI: 10.1109/TSC.2019.2902549
|
15 |
MA X, WANG S G, ZHANG S, et al. Cost-efficient resource provisioning for dynamic requests in cloud assisted mobile edge computing [J]. IEEE transactions on cloud computing, 2021, 9(3): 968–980. DOI: 10.1109/TCC.2019.2903240
|
16 |
YANG B, CAO X L, LI X F, et al. Mobile-edge-computing-based hierarchical machine learning tasks distribution for IIoT [J]. IEEE Internet of Things journal, 2020, 7(3): 2169–2180. DOI: 10.1109/JIOT.2019.2959035
|
17 |
SUN C, SHRIVASTAVA A, SINGH S, et al. Revisiting unreasonable effectiveness of data in deep learning era [C]//IEEE International Conference on Computer Vision (ICCV). IEEE, 2017: 843–852. DOI: 10.1109/ICCV.2017.97
|
18 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 770–778. DOI: 10.1109/CVPR.2016.90
|
19 |
HUANG J, RATHOD V, SUN C, et al. Speed/accuracy trade-offs for modern convolutional object detectors [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 3296–3297. DOI: 10.1109/CVPR.2017.351
|
20 |
STRUBELL E, GANESH A, MCCALLUM A. Energy and policy considerations for deep learning in NLP [C]//57th Annual Meeting of the Association for Computational Linguistics. ACL, 2019: 3645–3650
|
21 |
QU Y B, LIU J J. Computation offloading for mobile edge computing with accuracy guarantee [C]//ACM Turing Celebration Conference. ACM, 2019: 1–5. DOI: 10.1145/3321408.3321582
|
22 |
LIN J, CHEN W M, LIN Y J, et al. MCUNet: tiny deep learning on IoT devices [C]//Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems. NIPSF, 2020: 11711–11722
|
23 |
CHEN X, JIAO L, LI W Z, et al. Efficient multi-user computation offloading for mobile-edge cloud computing [J]. IEEE/ACM transactions on networking, 2016, 24(5): 2795–2808. DOI: 10.1109/TNET.2015.2487344
|
24 |
CHIANG M, HANDE P, LAN T, et al. Power control in wireless cellular networks [J]. Foundations and trends in networking, 2008, 2(4): 381–533. DOI: 10.1561/1300000009
|
25 |
XIAO M B, SHROFF N B, CHONG E K P. A utility-based power-control scheme in wireless cellular systems [J]. IEEE/ACM transactions on networking, 2003, 11(2): 210–221. DOI: 10.1109/TNET.2003.810314
|
26 |
MIECH A, ZHUKOV D, ALAYRAC J B, et al. HowTo100M: learning a text-video embedding by watching hundred million narrated video clips [C]//IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019: 2630–2640. DOI: 10.1109/ICCV.2019.00272
|
27 |
HUANG J W, BERRY R A, HONIG M L. Distributed interference compensation for wireless networks [J]. IEEE journal on selected areas in communications, 2006, 24(5): 1074–1084. DOI: 10.1109/JSAC.2006.872889
|
28 |
BOYD S, VANDENBERGHE L. Convex Optimization [M]. Cambridge: UK: Cambridge University Press, 2004. DOI: 10.1017/cbo9780511804441
|