ZTE Communications ›› 2024, Vol. 22 ›› Issue (4): 29-39.DOI: 10.12142/ZTECOM.202404005
• Special Topic • Previous Articles Next Articles
GU Zhenqian, YANG Zhen, ZHA Lulu, HU Junhui, CHI Nan, SHEN Chao()
Received:
2024-10-22
Online:
2024-12-03
Published:
2024-12-03
About author:
GU Zhenqian received his BS degree in electronic information engineering from Wuhan University, China in 2023. He is currently pursuing a PhD degree at the School of Information Science and Engineering, Fudan University, China. His research interests include visible light communication, GaN-based lasers, narrow linewidth lasers and integrated lasers.Supported by:
GU Zhenqian, YANG Zhen, ZHA Lulu, HU Junhui, CHI Nan, SHEN Chao. Ultra-Low Linewidth Frequency Stabilized Integrated Lasers: A New Frontier in Integrated Photonics[J]. ZTE Communications, 2024, 22(4): 29-39.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202404005
1 | SHEN C, LEE C M, STEGENBURGS E, et al. Semipolar III-nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system [J]. Applied physics express, 2017, 10(4): 042201. DOI: 10.7567/apex.10.042201 |
2 | SHEN C, NG T K, LEONARD J T, et al. High-modulation-efficiency, integrated waveguide modulator–laser diode at 448 nm [J]. ACS photonics, 2016, 3(2): 262–268. DOI: 10.1021/acsphotonics.5b00599 |
3 | SHEN C, NG T K, JANJUA B, et al. Optical gain and absorption of 420 nm InGaN-based laser diodes grown on m-plane GaN substrate [C]//Proceedings of Asia Communications and Photonics Conference 2014. OSA, 2014: 1. DOI: 10.1364/acpc.2014.aw4a.1 |
4 | SHEN C, LEE C M, NG T K, et al. High gain semiconductor optical amplifier—laser diode at visible wavelength [C]//International Electron Devices Meeting (IEDM). IEEE, 2016: 2241–2244. DOI: 10.1109/iedm.2016.7838473 |
5 | ORIEUX A, DIAMANTI E. Recent advances on integrated quantum communications [J]. Journal of optics, 2016, 18(8): 083002. DOI: 10.1088/2040-8978/18/8/083002 |
6 | LUDLOW A D, BOYD M M, YE J, et al. Optical atomic clocks [J]. Reviews of modern physics, 2015, 87(2): 637–701. DOI: 10.1103/revmodphys.87.637 |
7 | LEVINE J. Introduction to time and frequency metrology [J]. Review of scientific instruments, 1999, 70(6): 2567–2596. DOI: 10.1063/1.1149844 |
8 | YE J, KIMBLE H J, KATORI H. Quantum state engineering and precision metrology using state-insensitive light traps [J]. Science, 2008, 320(5884): 1734–1738. DOI: 10.1126/science.1148259 |
9 | SINCLAIR L C, DESCHÊNES J D, SWANN W C, et al. Compact fiber frequency combs for precision measurement outside the metrology lab [C]//Latin America Optics and Photonics Conference. OSA, 2018. DOI: 10.1364/laop.2018.w2d.1 |
10 | SORACE-AGASKAR C, KHARAS D, YEGNANARAYANAN S, et al. Versatile silicon nitride and alumina integrated photonic platforms for the ultraviolet to short-wave infrared [J]. IEEE journal of selected topics in quantum electronics, 2019, 25(5): 1–15. DOI: 10.1109/jstqe.2019.2904443 |
11 | PARK H, ZHANG C, TRAN M A, et al. Heterogeneous silicon nitride photonics [J]. Optica, 2020, 7(4): 336. DOI: 10.1364/optica.391809 |
12 | HU J H, HU F C, JIA J L, et al. 46.4 Gbps visible light communication system utilizing a compact tricolor laser transmitter [J]. Optics express, 2022, 30(3): 4365–4373. DOI: 10.1364/OE.447546 |
13 | HU J H, GUO Z Y, SHI J Y, et al. A metasurface-based full-color circular auto-focusing Airy beam transmitter for stable high-speed underwater wireless optical communications [J]. Nature communications, 2024, 15(1): 2944. DOI: 10.1038/s41467-024-47105-x |
14 | WANG J F, HU J H, LABORATORY P C, et al. High-speed GaN-based laser diode with modulation bandwidth exceeding 5 GHz for 20 Gbps visible light communication [J]. Photonics research, 2024, 12(6): 1186–1193. DOI: 10.1364/prj.516829 |
15 | KESSLER T, HAGEMANN C, GREBING C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity [J]. Nature photonics, 2012, 6(10): 687–692. DOI: 10.1038/nphoton.2012.217 |
16 | KIKUCHI K. Fundamentals of coherent optical fiber communications [J]. Journal of lightwave technology, 2016, 34(1): 157–179. DOI: 10.1109/jlt.2015.2463719 |
17 | FOX R W, OATES C W, HOLLBERG L W. 1. Stabilizing diode lasers to high-finesse cavities [J]. Experimental methods in the physical sciences cavity-enhanced spectroscopies, 2003, (40):1–41. DOI: 10.1016/S1079-4042(03)80017-6 |
18 | BRODNIK G M, HARRINGTON M W, BOSE D, et al. Chip-scale, optical-frequency-stabilized PLL for DSP-free, low-power coherent QAM in the DCI [C]//Optical Fiber Communication Conference and Exhibition (OFC). IEEE, 2020. DOI: 10.1364/ofc.2020.m3a.6 |
19 | BAI Z X, ZHAO Z A, TIAN M H, et al. A comprehensive review on the development and applications of narrow-linewidth lasers [J]. Microwave and optical technology letters, 2022, 64(12): 2244–2255. DOI: 10.1002/mop.33046 |
20 | GERTLER S, OTTERSTROM N T, GEHL M, et al. Narrowband microwave-photonic Notch filters using Brillouin-based signal transduction in silicon [J]. Nature communications, 2022, 13: 1947. DOI: 10.1038/s41467-022-29590-0 |
21 | LIU K K, WANG J W, CHAUHAN N, et al. Integrated photonic molecule Brillouin laser with a high-power sub-100-mHz fundamental linewidth [J]. Optics letters, 2023, 49(1): 45. DOI: 10.1364/ol.503126 |
22 | HILL K O, KAWASAKI B S, JOHNSON D C. Cw Brillouin laser [J]. Applied physics letters, 1976, 28(10): 608–609. DOI: 10.1063/1.88583 |
23 | YUAN Z Q, WANG H M, WU L E, et al. Linewidth enhancement factor in a microcavity Brillouin laser [J]. Optica, 2020, 7(9): 1150–1153. DOI: 10.1364/optica.394311 |
24 | EGGLETON B J, POULTON C G, PANT R. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits [J]. Advances in optics and photonics, 2013, 5(4): 536–587. DOI: 10.1364/aop.5.000536 |
25 | MARPAUNG D, YAO J P, CAPMANY J. Integrated microwave photonics [J]. Nature photonics, 2019, 13(2): 80–90. DOI: 10.1038/s41566-018-0310-5 |
26 | POLITI A, CRYAN M J, RARITY J G, et al. Silica-on-silicon waveguide quantum circuits [J]. Science, 2008, 320(5876): 646–649. DOI: 10.1126/science.1155441 |
27 | LABONTÉ L, ALIBART O, D'AURIA V, et al. Integrated photonics for quantum communications and metrology [J]. PRX quantum, 2024, 5(1): 010101. DOI: 10.1103/prxquantum.5.010101 |
28 | DE VOS K, BARTOLOZZI I, SCHACHT E, et al. Silicon-on-insulator microring resonator for sensitive and label-free biosensing [J]. Optics express, 2007, 15(12): 7610. DOI: 10.1364/oe.15.007610 |
29 | KOHLER D, SCHINDLER G, HAHN L, et al. Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics [J]. Light: science & applications, 2021, 10: 64. DOI: 10.1038/s41377-021-00486-w |
30 | MILLER D A B. Optical interconnects to silicon [J]. IEEE journal of selected topics in quantum electronics, 2000, 6(6): 1312–1317. DOI: 10.1109/2944.902184 |
31 | SOREF R. The past, present, and future of silicon photonics [J]. IEEE journal of selected topics in quantum electronics, 2006, 12(6): 1678–1687. DOI: 10.1109/jstqe.2006.883151 |
32 | REED G. Silicon Photonics [M/OL]. New York:John Wiley & Sons. (2008-04-18) [2024-06-22]. . DOI: 10.1002/9780470994535 |
33 | DOERR C R. Silicon photonic integration in telecommunications [J]. Frontiers in physics, 2015, 3: 37. DOI: 10.3389/fphy.2015.00037 |
34 | PINGUET T, DENTON S, GLOECKNER S, et al. High-volume manufacturing platform for silicon photonics [J]. Proceedings of the IEEE, 2018, 106(12): 2281–2290. DOI: 10.1109/jproc.2018.2859198 |
35 | XIAO X, XU H, LI X Y, et al. 25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions [J]. Optics express, 2012, 20(3): 2507. DOI: 10.1364/oe.20.002507 |
36 | MARSHALL O, HSU M, WANG Z C, et al. Heterogeneous integration on silicon photonics [J]. Proceedings of the IEEE, 2018,106(12): 2258–2269. DOI: 10.1021/nl404513 |
37 | LIU S T, WU X R, JUNG D, et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity [J]. Optica, 2019, 6(2): 128–134. DOI: 10.1364/optica.6.000128 |
38 | TRAN M A, ZHANG C, MORIN T J, et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths [J]. Nature, 2022, 610(7930): 54–60. DOI: 10.1038/s41586-022-05119-9 |
39 | SINGH N, XIN M, VERMEULEN D, et al. Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm [J]. Light: science & applications, 2017, 7(1): 17131. DOI: 10.1038/lsa.2017.131 |
40 | SUN W, TAN C K, WIERER J J Jr, et al. Ultra-broadband optical gain in III-nitride digital alloys [J]. Scientific reports, 2018, 8: 3109. DOI: 10.1038/s41598-018-21434-6 |
41 | BOUCAUD P, BHAT N, KHALFIOUI M AL, et al. Perspectives for III-nitride photonic platforms [J]. Nano futures, 2024, 8(2): 022001. DOI: 10.1088/2399-1984/ad41aa |
42 | YAN W, WEI Z X, YANG Y C, et al. Ultra-broadband magneto-optical isolators and circulators on a silicon nitride photonics platform [J]. Optica, 2024, 11(3): 376–384. DOI: 10.1364/optica.506366 |
43 | BLUMENTHAL D J, HEIDEMAN R, GEUZEBROEK D, et al. Silicon Nitride in Silicon Photonics [J]. Proceedings of the IEEE, 2018, 106(12): 2209–2231. DOI: 10.1109/JPROC.2018.2861576 |
44 | BRAMHAVAR S, SORACE-AGASKAR C, KHARAS D, et al., A visible-light integrated photonic platform for atomic systems [EB/OL]. [2024-06-22]. |
45 | ASLAN M M, WEBSTER N A, BYARD C L, et al. Low-loss optical waveguides for the near ultra-violet and visible spectral regions with Al2O3 thin films from atomic layer deposition [J]. Thin solid films, 2010, 518(17): 4935–4940. DOI: 10.1016/j.tsf.2010.03.011 |
46 | SOLTANI M, SOREF R, PALACIOS T, et al. AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range [J]. Optics express, 2016, 24(22): 25415–25423. DOI: 10.1364/oe.24.025415 |
47 | LIU X W, BRUCH A W, TANG H X, et al. Aluminum nitride photonic integrated circuits: from piezo-optomechanics to nonlinear optics [J]. Advances in optics and photonics, 2023, 15(1): 236–317. DOI: 10.1364/aop.479017 |
48 | BELT M, DAVENPORT M L, BOWERS J E, et al. Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates [J]. Optica, 2017, 4(5): 532–536. DOI: 10.1364/optica.4.000532 |
49 | BLUMENTHAL D J. Photonic integration for UV to IR applications [J]. APL photonics, 2020, 5(2): 020903. DOI: 10.1063/1.5131683 |
50 | BAUTERS J F, HECK M J R, JOHN D, et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides [J]. Optics express, 2011, 19(4): 3163. DOI: 10.1364/oe.19.003163 |
51 | HUFFMAN T A, BRODNIK G M, PINHO C, et al. Integrated resonators in an ultralow loss Si3N4/SiO2 platform for multifunction applications [J]. IEEE journal of selected topics in quantum electronics, 2018, 24(4): 1–9. DOI: 10.1109/jstqe.2018.2818459 |
52 | LU T J, FANTO M, CHOI H, et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum [J]. Optics express, 2018, 26(9): 11147–11160. DOI: 10.1364/oe.26.011147 |
53 | WOLFF C, SOREF R, POULTON C G, et al. Germanium as a material for stimulated Brillouin scattering in the mid-infrared [J]. Optics express, 2014, 22(25): 30735–30747. DOI: 10.1364/oe.22.030735 |
54 | GYGER F, LIU J Q, YANG F, et al. Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides [J]. Physical review letters, 2020, 124: 013902. DOI: 10.1103/physrevlett.124.013902 |
55 | JIN D, BAI Z X, LU Z W, et al. 22.5-W narrow-linewidth diamond Brillouin laser at 1064 nm [J]. Optics letters, 2022, 47(20): 5360–5363. DOI: 10.1364/ol.471447 |
56 | MERKLEIN M, KABAKOVA I V, ZARIFI A, et al. 100 years of Brillouin scattering: historical and future perspectives [J]. Applied physics reviews, 2022, 9(4). DOI: 10.1063/5.0095488 |
57 | BRILLOUIN L. Diffusion de la lumière et des rayons X par un corps transparent homogène [J]. Annales de physique, 1922, 9(17): 88–122. DOI: 10.1051/anphys/192209170088 |
58 | GARMIRE E. Perspectives on stimulated Brillouin scattering [J]. New journal of physics, 2017, 19(1): 011003. DOI: 10.1088/1367-2630/aa5447 |
59 | SAFAVI-NAEINI A H, VAN THOURHOUT D, BAETS R, et al. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics: publisher’s note [J]. Optica, 2019, 6(4): 410. DOI: 10.1364/optica.6.000213 |
60 | NIKLES M, THEVENAZ L, ROBERT P A. Brillouin gain spectrum characterization in single-mode optical fibers [J]. Journal of lightwave technology, 1997, 15(10): 1842–1851. DOI: 10.1109/50.633570 |
61 | GENG J H, STAINES S, WANG Z L, et al. Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth [J]. IEEE photonics technology letters, 2006, 18(17): 1813–1815. DOI: 10.1109/LPT.2006.881145 |
62 | KOBYAKOV A, SAUER M, CHOWDHURY D. Stimulated Brillouin scattering in optical fibers [J]. Advances in optics and photonics, 2009, 2(1): 1–59. DOI: 10.1364/aop.2.000001 |
63 | CHEN M, MENG Z, ZHANG Y C, et al. Ultranarrow-linewidth Brillouin/erbium fiber laser based on 45-cm erbium-doped fiber [J]. IEEE photonics journal, 2015, 7(1): 1500606. DOI: 10.1109/JPHOT.2015.2399354 |
64 | PANT R, POULTON C G, CHOI D Y, et al. On-chip stimulated Brillouin scattering [J]. Optics express, 2011, 19(9): 8285–8290. DOI: 10.1364/oe.19.008285 |
65 | POULTON C G, PANT R, EGGLETON B J. Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides [J]. Journal of the optical society of America B, 2013, 30(10): 2657–2664. DOI: 10.1364/josab.30.002657 |
66 | SHIN H, QIU W J, JARECKI R, et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides [J]. Nature communications, 2013, 4: 1944. DOI: 10.1038/ncomms2943 |
67 | GENG J H, JIANG S B. Pump-to-stokes transfer of relative intensity noise in Brillouin fiber ring lasers [J]. Optics letters, 2006, 32(1): 11–13. DOI: 10.1364/ol.32.000011 |
68 | LOH W, BECKER J, COLE D C, et al. A microrod-resonator Brillouin laser with 240 Hz absolute linewidth [J]. New journal of physics, 2016, 18(4): 045001. DOI: 10.1088/1367-2630/18/4/045001 |
69 | BEHUNIN R O, OTTERSTROM N T, RAKICH P T, et al. Fundamental noise dynamics in cascaded-order Brillouin lasers [J]. Physical review A, 2018, 98(2): 023832. DOI: 10.1103/physreva.98.023832 |
70 | BLUMENTHAL D J, KABAKOVA I, RAKICH P T, et al. Integrated Brillouin lasers and their applications [J]. Semiconductors and semimetals, 2022, (110): 107–180. DOI: 10.1016/bs.semsem.2022.05.004 |
71 | GUNDAVARAPU S, BRODNIK G M, PUCKETT M, et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser [J]. Nature photonics, 2019, 13(1): 60–67. DOI: 10.1038/s41566-018-0313-2 |
72 | EGGLETON B J, POULTON C G, RAKICH P T, et al. Brillouin integrated photonics [J]. Nature photonics, 2019, 13(10): 664–677. DOI: 10.1038/s41566-019-0498-z |
73 | PUCKETT M W, LIU K K, CHAUHAN N, et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth [J]. Nature communications, 2021, 12: 934. DOI: 10.1038/s41467-021-21205-4 |
74 | LIU K K, JIN N J, CHENG H T, et al. Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380 μW threshold Brillouin lasing [J]. Optics letters, 2022, 47(7): 1855–1858. DOI: 10.1364/ol.454392 |
75 | JIN D, BAI Z X, CHEN Y F, et al. A narrow-linewidth high-power fused silica Brillouin laser [J]. Applied physics letters, 2023, 123(5). DOI: 10.1063/5.0159079 |
76 | CHAUHAN N, ISICHENKO A, LIU K K, et al. Visible 780 nm SBS laser with mW level threshold in an ultra-high 145 million Q integrated waveguide resonator [C]//Proceedings of CLEO. IEEE, 2023, 604(7906). DOI: 10.1364/cleo_si.2023.sf1k.6 |
77 | CHAUHAN N, WANG J W, BOSE D, et al. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics [J]. Optics express, 2022, 30(5): 6960. DOI: 10.1364/oe.448938 |
78 | JIN D, BAI Z X, CHEN Y F, et al. Intrinsic cascade-free intramode scattering Brillouin laser [J]. APL photonics, 2023, 8(8). DOI: 10.1063/5.0155283 |
79 | WANG W Y, YU Y, LI Y F, et al. Tailorable Brillouin light scattering in a lithium niobate waveguide [J]. Applied sciences, 2021, 11(18): 8390. DOI: 10.3390/app11188390 |
80 | KABAKOVA I V, PANT R, CHOI D Y, et al. Narrow linewidth Brillouin laser based on chalcogenide photonic chip [J]. Optics letters, 2013, 38(17): 3208. DOI: 10.1364/ol.38.003208 |
81 | KIM D G, HAN S, HWANG J, et al. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor [J]. Nature communications, 2020, 11: 5933. DOI: 10.1038/s41467-020-19799-2 |
82 | LAI C K, CHOI D Y, ATHANASIOS N J, et al. Hybrid chalcogenide-germanosilicate waveguides for high performance stimulated Brillouin scattering applications [J]. Advanced functional materials, 2022, 32(3): 2105230. DOI: 10.1002/adfm.202105230 |
83 | LAI C K, MERKLEIN M, CHOI D Y, et al. Photosensitivity and optical nonlinearity in arsenic selenide planar waveguides [J]. Optical materials express, 2023, 13(10): 2808. DOI: 10.1364/ome.499219 |
84 | BAUTERS J F, HECK M J R, JOHN D D, et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding [J]. Optics express, 2011, 19(24): 24090. DOI: 10.1364/oe.19.024090 |
85 | YANG K Y, OH D Y, LEE S H, et al. Bridging ultrahigh-Q devices and photonic circuits [J]. Nature photonics, 2018, 12(5): 297–302. DOI: 10.1038/s41566-018-0132-5 |
86 | LI J, LEE H, YANG K Y, et al. Sideband spectroscopy and dispersion measurement in microcavities [J]. Optics express, 2012, 20(24): 26337. DOI: 10.1364/oe.20.026337 |
87 | BAI Z X, ZHAO Z A, QI Y Y, et al. Narrow-linewidth laser linewidth measurement technology [J]. Frontiers in physics, 2021, 9: 768165. DOI: 10.3389/fphy.2021.768165 |
88 | CHEN J Q, CHEN C, SUN J J, et al. Linewidth measurement of a narrow-linewidth laser: principles, methods, and systems [J]. Sensors, 2024, 24(11): 3656. DOI: 10.3390/s24113656 |
89 | WANG K, CHENG M, SHI H T, et al. Demonstration of forward Brillouin gain in a hybrid photonic—phononic silicon waveguide [J]. ACS photonics, 2021, 8(9): 2755–2763. DOI: 10.1021/acsphotonics.1c00880 |
90 | LIU K K, DALLYN J H, BRODNIK G M, et al. Photonic circuits for laser stabilization with integrated ultra-high Q and Brillouin laser resonators [J]. APL photonics, 2022, 7(9). DOI: 10.1063/5.0091686 |
91 | ELSHAARI A W, PERNICE W, SRINIVASAN K, et al. Hybrid integrated quantum photonic circuits [J]. Nature photonics, 2020, 14(5): 285–298. DOI: 10.1038/s41566-020-0609-x |
92 | WANG J W, SCIARRINO F, LAING A, et al. Integrated photonic quantum technologies [J]. Nature photonics, 2020, 14(5): 273–284. DOI: 10.1038/s41566-019-0532-1 |
93 | BLUMENTHAL D J, BALLANI H, BEHUNIN R O, et al. Frequency-stabilized links for coherent WDM fiber interconnects in the datacenter [J]. Journal of lightwave technology, 2020, 38(13): 3376–3386. DOI: 10.1109/JLT.2020.2985275 |
94 | BRODNIK G M, HARRINGTON M W, DALLYN J H, et al. Optically synchronized fibre links using spectrally pure chip-scale lasers [J]. Nature photonics, 2021, 15: 588–593. DOI: 10.1038/s41566-021-00831-w |
95 | LOH W, GREEN A A S, BAYNES F N, et al. Dual-microcavity narrow-linewidth Brillouin laser [J]. Optica, 2015, 2(3): 225. DOI: 10.1364/optica.2.000225 |
96 | LOH W, YEGNANARAYANAN S, O’DONNELL F, et al. Ultra-narrow linewidth Brillouin laser with nanokelvin temperature self-referencing [J]. Optica, 2019, 6(2): 152. DOI: 10.1364/optica.6.000152 |
97 | LOH W, KHARAS D, MAXSON R, et al. Cooling of an integrated Brillouin laser below the thermal limit [J]. Optics express, 2022, 30(13): 22562. DOI: 10.1364/oe.451622 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||