1 |
SUN C, WADE M T, LEE Y, et al. Single-chip microprocessor that communicates directly using light [J]. Nature, 2015, 528( 7583): 534– 538. DOI: 10.1038/nature16454
|
2 |
ATABAKI A H, MOAZENI S, PAVANELLO F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip [J]. Nature, 2018, 556( 7701): 349– 354. DOI: 10.1038/s41586-018-0028-z
|
3 |
AMANO H. Development of GaN-based blue LEDs and metalorganic vapor phase epitaxy of GaN and related materials [J]. Progress in crystal growth and characterization of materials, 2016, 62( 2): 126– 135. DOI: 10.1016/j.pcrysgrow.2016.04.006
|
4 |
MIKULICS M, MAYER J, HARDTDEGEN H H. Cutting-edge nano-LED technology [J]. Journal of applied physics, 2022, 131( 11): 110903. DOI: 10.1063/5.0087279
|
5 |
TABALLIONE C, VAN DER MEER R, SNIJDERS H J, et al. A universal fully reconfigurable 12-mode quantum photonic processor [J]. Materials for quantum technology, 2021, 1( 3): 035002. DOI: 10.1088/2633-4356/ac168c
|
6 |
WANG Y J, WANG X, ZHU B C, et al. Full-duplex light communication with a monolithic multicomponent system [J]. Light, science & applications, 2018, 7: 83. DOI: 10.1038/s41377-018-0083-0
|
7 |
FENG M X, WANG J, ZHOU R, et al. On-chip integration of GaN-based laser, modulator, and photodetector grown on Si [J]. IEEE journal of selected topics in quantum electronics, 2018, 24( 6): 8200305. DOI: 10.1109/JSTQE.2018.2815906
|
8 |
LI K H, FU W Y, CHEUNG Y F, et al. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate [J]. Optica, 2018, 5( 5): 564. DOI: 10.1364/optica.5.000564
|
9 |
CHI N, HAAS H, KAVEHRAD M, et al. Visible light communications: demand factors, benefits and opportunities [J]. IEEE wireless communications, 2015, 22( 2): 5– 7. DOI: 10.1109/MWC.2015.7096278
|
10 |
ISLIM M S, FERREIRA R X, HE X Y, et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED [J]. Photonics research, 2017, 5( 2): A35. DOI: 10.1364/prj.5.000a35
|
11 |
CHI N, ZHOU Y J, LIANG S Y, et al. Enabling technologies for high-speed visible light communication employing CAP modulation [J]. Journal of lightwave technology, 2018, 36( 2): 510– 518. DOI: 10.1109/JLT.2017.2783906
|
12 |
ZHOU Y J, ZHU X, HU F C, et al. Common-anode LED on a Si substrate for beyond 15 Gbit/s underwater visible light communication [J]. Photonics research, 2019, 7( 9): 1019. DOI: 10.1364/prj.7.001019
|
13 |
ZHANG H, YAN J B, YE Z Q, et al. Monolithic GaN optoelectronic system on a Si substrate [J]. Applied physics letters, 2022, 121( 18): 181103. DOI: 10.1063/5.0125324
|
14 |
ZHANG H, YE Z Q, YAN J B, et al. Multiplexing of bias-controlled modulation modes on a monolithic III-nitride optoelectronic chip [J]. Optics letters, 2023, 48( 19): 5069– 5072. DOI: 10.1364/OL.503429
|
15 |
ZHANG H, YE Z Q, FU J W, et al. Asymmetric-absorption-induced spectral redshift in a monolithic III-nitride on-chip system [J]. Optics express, 2024, 32( 10): 18193– 18200. DOI: 10.1364/OE.525174
|
16 |
XIE M Y, JIANG Y, GAO X M, et al. Uniting a III-nitride transmitter, waveguide, modulator, and receiver on a single chip [J]. Advanced engineering materials, 2021, 23( 12): 2100582. DOI: 10.1002/adem.202100582
|
17 |
CHICHIBU S, AZUHATA T, SOTA T, et al. Spontaneous emission of localized excitons in InGaN single and multiquantum well structures [J]. Applied physics letters, 1996, 69( 27): 4188– 4190. DOI: 10.1063/1.116981
|
18 |
WANG Y. Gravitational effect creates the irreversibility [EB/OL]. [ 2023-11-14].
|
19 |
LIU P, QI Z, FU J, et al. Unification of irreversibility and energy diagram theory [J]. ACS omega, 2023, 8( 22): 20004– 20008. DOI: 10.1021/acsomega.3c02189
|
20 |
SUGIYAMA M. Selective area growth of III-V semiconductors: from fundamental aspects to device structures [C]// The 22nd International Conference on Indium Phosphide and Related Materials (IPRM). IEEE, 2010: 1– 6. DOI: 10.1109/ICIPRM.2010.5515910
|
21 |
SHI Z, GAO X M, YUAN J L, et al. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics [J]. Applied physics letters, 2017, 111( 24): 241104. DOI: 10.1063/1.5010892
|
22 |
MILLER D A, CHEMLA D S, DAMEN T C, et al. Electric field dependence of optical absorption near the band gap of quantum-well structures [J]. Physical review B.B. condensed matter, 1985, 32( 2): 1043– 1060. DOI: 10.1103/physrevb.32.1043
|
23 |
WEINER J S, MILLER D A B, CHEMLA D S. Quadratic electro-optic effect due to the quantum-confined Stark effect in quantum wells [J]. Applied physics letters, 1987, 50( 13): 842– 844. DOI: 10.1063/1.98008
|