1 |
KOZDROWSKI S, ŻOTKIEWICZ M, SUJECKI S. Optimization of optical networks based on CDC-ROADM technology [J]. Applied sciences, 2019, 9(3): 399. DOI: 10.3390/app9030399
|
2 |
FORD J E, AKSYUK V A, BISHOP D J, et al. Wavelength add-drop switching using tilting micromirrors [J]. Journal of lightwave technology, 1999, 17(5): 904–911. DOI: 10.1109/50.762910
|
3 |
DOERR C R, STULZ L W, LEVY D S, et al. Silica-waveguide 1×9 wavelength- selective cross connect [C]//Optical Fiber Communication Conference. OSA, 2002. DOI:10.1109/OFC.2002.1036752
|
4 |
BAXTER G, FRISKEN S, ABAKOUMOV D, et al. Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements [C]//Proc. Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference. IEEE, 2006. DOI:10.1109/OFC.2006.215365
|
5 |
MA Y R, STEWART L, ARMSTRONG J, et al. Recent progress of wavelength selective switch [J]. Journal of lightwave technology, 2021, 39(4): 896–903. DOI: 10.1109/JLT.2020.3022375
|
6 |
HAN T, PLUMRIDGE J, FRISKEN S, et al. LCoS-based matrix switching for 2 × 4 WSS for fully flexible channel selection [C]//Proc. International Conference on Photonics in Switching (PS). IEEE, 2012: 1–3
|
7 |
YANG H N, ROBERTSON B, CHU D P. Crosstalk reduction in holographic wavelength selective switches based on phase-only LCoS devices [C]//Proc. Optical Fiber Communication Conference. OSA, 2014. DOI: 10.1364/ofc.2014.th2a.23
|
8 |
YANG H N, ROBERTSON B, WILKINSON P, et al. Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches [J]. Optics express, 2016, 24(11): 12240–12253. DOI: 10.1364/OE.24.012240
|
9 |
HE J, NORWOOD R A, BRANDT-PEARCE M, et al. A survey on recent advances in optical communications [J]. Computers & electrical engineering, 2014, 40(1): 216–240. DOI: 10.1016/j.compeleceng.2013.11.017
|
10 |
ROBERTSON B, YANG H N, REDMOND M M, et al. Demonstration of multi-casting in a 1 × 9 LCoS wavelength selective switch [J]. Journal of lightwave technology, 2014, 32(3): 402–410. DOI: 10.1109/JLT.2013.2293919
|
11 |
WANG M, ZONG L J, MAO L, et al. LCoS SLM study and its application in wavelength selective switch [J]. Photonics, 2017, 4(2): 22. DOI: 10.3390/photonics4020022
|
12 |
MILEWSKI G, ENGSTRÖM D, BENGTSSON J. Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators [J]. Applied optics, 2007, 46(1): 95–105. DOI: 10.1364/AO.46.000095
|
13 |
PERSSON M, ENGSTRÖM D, BENGTSSON J, et al. Realistic treatment of spatial light modulator pixelation in real-time design algorithms for holographic spot generation [C]//Proc. Digital Holography and Three-Dimensional Imaging. OSA, 2011. DOI: 10.1364/dh.2011.dwc32
|
14 |
PERSSON M, ENGSTRÖM D, GOKSÖR M. Reducing the effect of pixel crosstalk in phase only spatial light modulators [J]. Optics express, 2012, 20(20): 22334–22343. DOI: 10.1364/OE.20.022334
|
15 |
NIE J W, DONG L Y, TONG X W, et al. Phase flicker minimisation for crosstalk suppression in optical switches based on digital liquid crystal on silicon devices [J]. Optics express, 2021, 29(7): 10556–10567. DOI: 10.1364/OE.415800
|
16 |
ROBERTSON B, ZHANG Z C, YANG H N, et al. Reduction of crosstalk in a colourless multicasting LCOS-based wavelength selective switch by the application of wavefront encoding [C]//Proc. Next-Generation Optical Communication: Components, Sub-Systems, and Systems. SPIE, 2012. DOI: 10.1117/12.907281
|
17 |
HUANG L H, RAO C H. Wavefront sensorless adaptive optics: a general model-based approach [J]. Optics express, 2011, 19(1): 371–379. DOI: 10.1364/OE.19.000371
|
18 |
FRISKEN S J. Polarization diverse wavelength selective switch: US20170214482 [P]. 2017
|
19 |
ZHOU Y R, KEENS J, WAKIM W. High capacity innovations enabling scalable optical transmission networks [J]. Journal of lightwave technology, 2023, 41(3): 957–967. DOI: 10.1109/JLT.2022.3206277
|
20 |
MAROM D M, NEILSON D T, GREYWALL D S, et al. Wavelength-selective 1×K switches using free-space optics and MEMS micromirrors: theory, design, and implementation [J]. Journal of lightwave technology, 2005, 23(4): 1620–1630. DOI: 10.1109/JLT.2005.844213
|