ZTE Communications ›› 2025, Vol. 23 ›› Issue (2): 60-75.DOI: 10.12142/ZTECOM.202502007
• Special Topic • Previous Articles Next Articles
CHEN Peng, LIU Yajuan, WEI Wentong, WANG Wei(), LI Na
Received:
2025-02-20
Online:
2025-06-25
Published:
2025-06-10
About author:
CHEN Peng graduated from the School of Marine Science and Technology, Northwestern Polytechnical University, ChiSupported by:
CHEN Peng, LIU Yajuan, WEI Wentong, WANG Wei, LI Na. Air-to-Ground Channel Measurement and Modeling for Low-Altitude UAVs: A Survey[J]. ZTE Communications, 2025, 23(2): 60-75.
Ref. | Scenario | Propagation Path | Model | PLE |
---|---|---|---|---|
[ | Urban/suburban | LoS | Log-distance path loss model, two-ray model | L-band: 1.7, C-band: 1.5–2 |
[ | Urban/open field | LoS | Free space path loss model | |
[ | Urban/rural | LoS | Log-distance path loss model | 4.1 |
[ | Open field | LoS | Log-distance path loss model | 2.01 |
[ | Aerial | LoS | Log-distance path loss model | 2.32 |
[ | Water | LoS | Log-distance path loss model | 1.9 |
[ | Urban/suburban | LoS, NLoS | Free space path loss model | |
[ | Urban | LoS, NLoS | Free space path loss model |
Table 1 Research on large-scale A2G propagation and its path loss parameters in existing literature
Ref. | Scenario | Propagation Path | Model | PLE |
---|---|---|---|---|
[ | Urban/suburban | LoS | Log-distance path loss model, two-ray model | L-band: 1.7, C-band: 1.5–2 |
[ | Urban/open field | LoS | Free space path loss model | |
[ | Urban/rural | LoS | Log-distance path loss model | 4.1 |
[ | Open field | LoS | Log-distance path loss model | 2.01 |
[ | Aerial | LoS | Log-distance path loss model | 2.32 |
[ | Water | LoS | Log-distance path loss model | 1.9 |
[ | Urban/suburban | LoS, NLoS | Free space path loss model | |
[ | Urban | LoS, NLoS | Free space path loss model |
Ref. | Frequency/GHz | Fading Distribution | K-factor/dB | Scenario |
---|---|---|---|---|
[ | 3.1–5.3 | Nakagami | Suburban/open field | |
[ | 2 | Rayleigh, Ricean | Urban/suburban | |
[ | 5.75 | Ricean | -5–10 | Urban/suburban |
[ | 0.968–2.06 | Ricean | 12–27.4 | Urban/suburban |
[ | 8–18 | Ricean, Nakagami | 2–5 | Forest |
[ | 2 | Ricean | Urban/suburban |
Table 2 Fading characteristics of small-scale air-to-ground propagation channels in the literature
Ref. | Frequency/GHz | Fading Distribution | K-factor/dB | Scenario |
---|---|---|---|---|
[ | 3.1–5.3 | Nakagami | Suburban/open field | |
[ | 2 | Rayleigh, Ricean | Urban/suburban | |
[ | 5.75 | Ricean | -5–10 | Urban/suburban |
[ | 0.968–2.06 | Ricean | 12–27.4 | Urban/suburban |
[ | 8–18 | Ricean, Nakagami | 2–5 | Forest |
[ | 2 | Ricean | Urban/suburban |
Model | Ref. | Angle Distribution Function | Scenario |
---|---|---|---|
Cylindroid | [ | AOA: EOA: | Highly accurate, but relies on geographic information and high computational complexity |
Sphere | [ | AOA: | Angular parameters can be abstracted to specific mathematical distributions, which can greatly simplify calculations |
Cylinder | [ [ [ [ | AOA: EOA: |
Table 4 Comparison of geometry-based stochastic channel models
Model | Ref. | Angle Distribution Function | Scenario |
---|---|---|---|
Cylindroid | [ | AOA: EOA: | Highly accurate, but relies on geographic information and high computational complexity |
Sphere | [ | AOA: | Angular parameters can be abstracted to specific mathematical distributions, which can greatly simplify calculations |
Cylinder | [ [ [ [ | AOA: EOA: |
Ref. | Frequency | Bandwidth | Transmit Power/dBm | Channel Characteristics |
---|---|---|---|---|
[ | 0.968 GHz, 5.06 GHz | 5 MHz, 50 MHz | 40 | PL, K-factor |
[ | 2.05 GHz | — | — | MPC, K-factor, PL |
[ | 3.1–5.3 GHz | 2.2 GHz | -14.5 | PL, MPC |
[ | 2.4 GHz | — | 0 | RSSI |
[ | 5.7 GHz | — | 40 | PL |
[ | 200 MHz–5 GHz | — | — | PL, SF |
Table 5 Two-ray model for selected A2G channels
Ref. | Frequency | Bandwidth | Transmit Power/dBm | Channel Characteristics |
---|---|---|---|---|
[ | 0.968 GHz, 5.06 GHz | 5 MHz, 50 MHz | 40 | PL, K-factor |
[ | 2.05 GHz | — | — | MPC, K-factor, PL |
[ | 3.1–5.3 GHz | 2.2 GHz | -14.5 | PL, MPC |
[ | 2.4 GHz | — | 0 | RSSI |
[ | 5.7 GHz | — | 40 | PL |
[ | 200 MHz–5 GHz | — | — | PL, SF |
Model | Advantage | Disadvantage |
---|---|---|
Measurement-based model | Matching actual channel scenarios | Single application scenario |
Ray-tracing-based model | Discriminating multipath in the channel | High computational volume and complexity |
Geometric random channel model | Matching actual channel scenarios | More complex calculations |
Table 6 Comparison of the models proposed in Refs. [73–76]
Model | Advantage | Disadvantage |
---|---|---|
Measurement-based model | Matching actual channel scenarios | Single application scenario |
Ray-tracing-based model | Discriminating multipath in the channel | High computational volume and complexity |
Geometric random channel model | Matching actual channel scenarios | More complex calculations |
1 | ZENG Y, WU Q Q, ZHANG R. Accessing from the sky: a tutorial on UAV communications for 5G and beyond [J]. Proceedings of the IEEE, 2019, 107(12): 2327–2375. DOI: 10.1109/JPROC.2019.2952892 |
2 | KHAWAJA W, OZDEMIR O, ERDEN F, et al. Ultra-wideband air-to-ground propagation channel characterization in an open area [J]. IEEE transactions on aerospace and electronic systems, 2020, 56(6): 4533–4555. DOI: 10.1109/taes.2020.3003104 |
3 | ZHONG W Z, GU Y, ZHU Q M, et al. A novel spatial beam training strategy for mmWave UAV communications [J]. Physical communication, 2020, 41: 101106. DOI: 10.1016/j.phycom.2020.101106 |
4 | ZHU Q M, JIANG S, WANG C X, et al. Effects of digital map on the RT-based channel model for UAV mmWave communications [C]//Proc. International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2020: 1648–1653. DOI: 10.1109/IWCMC48107.2020.9148461 |
5 | HUA B Y, ZHOU T T, ZHU Q M, et al. A realistic 3D non-stationary channel model for UAV-to-vehicle communications incorporating fuselage posture [J]. China communications, 2023, 20(6): 277–290. DOI: 10.23919/JCC.fa.2021-0290.202306 |
6 | ZHU Q M, MAO K, SONG M Z, et al. Map-based channel modeling and generation for U2V mmWave communication [J]. IEEE transactions on vehicular technology, 2022, 71(8): 8004–8015. DOI: 10.1109/TVT.2022.3174404 |
7 | LIN X Q, YAJNANARAYANA V, MURUGANATHAN S D, et al. The sky is not the limit: LTE for unmanned aerial vehicles [J]. IEEE communications magazine, 2018, 56(4): 204–210. DOI: 10.1109/MCOM.2018.1700643 |
8 | AMORIM R, NGUYEN H, MOGENSEN P, et al. Radio channel modeling for UAV communication over cellular networks [J]. IEEE wireless communications letters, 2017, 6(4): 514–517. DOI: 10.1109/LWC.2017.2710045 |
9 | ONO F, TAKIZAWA K, TSUJI H, et al. S-band radio propagation characteristics in urban environment for unmanned aircraft systems [C]//2015 International Symposium on Antennas and Propagation (ISAP). IEEE, 2015: 675–678 |
10 | TENG E, DIOGO FALCÃO J, IANNUCCI B. Holes-in-the-sky: a field study on cellular-connected UAS [C]//Proc. International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2017: 1165–1174. DOI: 10.1109/ICUAS.2017.7991402 |
11 | KHUWAJA A A, CHEN Y F, ZHAO N, et al. A survey of channel modeling for UAV communications [J]. IEEE communications surveys & tutorials, 2018, 20(4): 2804–2821. DOI: 10.1109/COMST.2018.2856587 |
12 | NI G, DU Z, WANG D, et al. Simulation and analysis of ground and air communication channel characteristics [J]. Radio engineering, 2015, 45(6): 78–80+4. DOI:10.3969/j.issn.1003-3106.2015.06.21 |
13 | MATOLAK D W, SUN R Y. Air-ground channel characterization for unmanned aircraft systems—part III: the suburban and near-urban environments [J]. IEEE transactions on vehicular technology, 2017, 66(8): 6607–6618. DOI: 10.1109/TVT.2017.2659651 |
14 | TAKIZAWA K, KAGAWA T, LIN S, et al. C-band aircraft-to-ground (A2G) radio channel measurement for unmanned aircraft systems [C]//Proc. International Symposium on Wireless Personal Multimedia Communications (WPMC). IEEE, 2014: 754–758 |
15 | NEWHALL W G, MOSTAFA R, DIETRICH C, et al. Wideband air-to-ground radio channel measurements using an antenna array at 2 GHz for low-altitude operations [C]//Proc. IEEE Military Communications Conference. IEEE, 2003: 1422–1427. DOI: 10.1109/MILCOM.2003.1290436 |
16 | YANMAZ E, KUSCHNIG R, BETTSTETTER C. Achieving air-ground communications in 802.11 networks with three-dimensional aerial mobility [C]//Proc. IEEE INFOCOM. IEEE, 2013: 120–124. DOI: 10.1109/INFCOM.2013.6566747 |
17 | AHMED N, KANHERE S S, JHA S. On the importance of link characterization for aerial wireless sensor networks [J]. IEEE communications magazine, 2016, 54(5): 52–57. DOI: 10.1109/MCOM.2016.7470935 |
18 | MATOLAK D W, SUN R Y. Air-ground channel characterization for unmanned aircraft systems: the over-freshwater setting [C]//Proc. Integrated Communications, Navigation and Surveillance Conference (ICNS) Conference. IEEE, 2014. DOI: 10.1109/ICNSurv.2014.6819996 |
19 | HOLIS J, PECHAC P. Elevation dependent shadowing model for mobile communications via high altitude platforms in built-up areas [J]. IEEE transactions on antennas and propagation, 2008, 56(4): 1078–1084. DOI: 10.1109/TAP.2008.919209 |
20 | SIMUNEK M, PECHAC P, FONTAN F P. Excess loss model for low elevation links in urban areas for UAVs [J]. Radioengineering, 2011, 20(3): 561–568 |
21 | HE R S. Wireless channel measurement and modeling in mobile communication scenario: theory and application [M]. Beijing, China: Posts & Telecom Press, 2018 |
22 | YANMAZ E, KUSCHNIG R, BETTSTETTER C. Channel measurements over 802.11a-based UAV-to-ground links [C]//Proc. IEEE GLOBECOM Workshops (GC Wkshps). IEEE, 2011: 1280–1284. DOI: 10.1109/GLOCOMW.2011.6162389 |
23 | SUN R Y, MATOLAK D W. Air-ground channel characterization for unmanned aircraft systems part II: hilly and mountainous settings [J]. IEEE transactions on vehicular technology, 2017, 66(3): 1913–1925. DOI: 10.1109/TVT.2016.2585504 |
24 | CHENG X, WANG C X, LAURENSON D I, et al. Second order statistics of non-isotropic mobile-to-mobile ricean fading channels [C]//Proc. IEEE International Conference on Communications. IEEE, 2009: 1–5. DOI: 10.1109/ICC.2009.5199438 |
25 | GAO X J, CHEN Z L, HU Y J. Analysis of unmanned aerial vehicle MIMO channel capacity based on aircraft attitude [J]. WSEAS transactions on information science and applications, 2013, 10(2): 58–67 |
26 | BLANDINO S, KALTENBERGER F, FEILEN M. Wireless channel simulator testbed for airborne receivers [C]//Proc. IEEE Globecom Workshops (GC Wkshps). IEEE, 2015: 1–6. DOI: 10.1109/GLOCOMW.2015.7413991 |
27 | WENTZ M, STOJANOVIC M. A MIMO radio channel model for low-altitude air-to-ground communication systems [C]//Proc. IEEE 82nd Vehicular Technology Conference (VTC2015-Fall). IEEE, 2015: 1–6. DOI: 10.1109/VTCFall.2015.7390797 |
28 | GULFAM S M, NAWAZ S J, AHMED A, et al. Analysis on multipath shape factors of air-to-ground radio communication channels [C]//Proc. Wireless Telecommunications Symposium (WTS). IEEE, 2016: 1–5. DOI: 10.1109/WTS.2016.7482050 |
29 | KSENDZOV A. A geometrical 3D multi-cluster mobile-to-mobile MIMO channel model with Rician correlated fading [C]//Proc. 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE, 2016: 191–195. DOI: 10.1109/ICUMT.2016.7765355 |
30 | TU H D, SHIMAMOTO S. A proposal of wide-band air-to-ground communication at airports employing 5-GHz band [C]//Proc. IEEE Wireless Communications and Networking Conference. IEEE, 2009: 1–6. DOI: 10.1109/WCNC.2009.4917538 |
31 | SIMUNEK M, FONTÁN F P, PECHAC P. The UAV low elevation propagation channel in urban areas: statistical analysis and time-series generator [J]. IEEE transactions on antennas and propagation, 2013, 61(7): 3850–3858. DOI: 10.1109/TAP.2013.2256098 |
32 | MATOLAK D W, SUN R Y. Air-ground channels for UAS: summary of measurements and models for L- and C-bands [C]//Proc. Integrated Communications Navigation and Surveillance (ICNS). IEEE, 2016. DOI: 10.1109/ICNSURV.2016.7486380 |
33 | KHAWAJA W, GUVENC I, MATOLAK D. UWB channel sounding and modeling for UAV air-to-ground propagation channels [C]//Proc. IEEE Global Communications Conference (GLOBECOM). IEEE, 2016: 1–7. DOI: 10.1109/GLOCOM.2016.7842372 |
34 | LEMOS CID E, ALEJOS A V, GARCIA SANCHEZ M. Signaling through scattered vegetation: empirical loss modeling for low elevation angle satellite paths obstructed by isolated thin trees [J]. IEEE vehicular technology magazine, 2016, 11(3): 22–28. DOI: 10.1109/MVT.2016.2550008 |
35 | HUANG Z Y, RODRÍGUEZ-PIÑEIRO J, DOMÍNGUEZ-BOLAÑO T, et al. Empirical dynamic modeling for low-altitude UAV propagation channels [J]. IEEE transactions on wireless communications, 2021, 20(8): 5171–5185. DOI: 10.1109/TWC.2021.3065959 |
36 | PINKNEY M F J, HAMPEL D, DIPIERRO S. Unmanned aerial vehicle (UAV) communications relay [C]//Proc. IEEE Military Communications Conference. IEEE, 1996: 47–51. DOI: 10.1109/MILCOM.1996.568581 |
37 | YANG J B, LIU P, MAO H. Model and simulation of narrowband ground-to-air fading channel based on Markov process [C]//Proc. International Conference on Network Computing and Information Security. IEEE, 2011. DOI: 10.1109/ncis.2011.37 |
38 | KUNISCH J, DE LA TORRE I, WINKELMANN A, et al. Wideband time-variant air-to-ground radio channel measurements at 5 GHz [C]//Proc. 5th European Conference on Antennas and Propagation (EUCAP). IEEE, 2011: 1386–1390 |
39 | BLUEMM C, HELLER C, FOURESTIE B, et al. Air-to-ground channel characterization for OFDM communication in C-Band [C]//Proc. 7th International Conference on Signal Processing and Communication Systems (ICSPCS). IEEE, 2013: 1–8. DOI: 10.1109/ICSPCS.2013.6723935 |
40 | WANG X Y. Analysis and research on channel modelling of low altitude air-ground communication system based on TD-LTE [D]. Shanghai, China: Shanghai Jiao Tong University, 2014 |
41 | ELNOUBI S M. A simplified stochastic model for the aeronautical mobile radio channel [C]//Proc. Vehicular Technology Society 42nd VTS Conference, Frontiers of Technology. IEEE, 1992: 960–963. DOI: 10.1109/VETEC.1992.245268 |
42 | ZAMAN M A, MAMUN S A, GAFFAR M, et al. Modeling VHF air-to-ground multipath propagation channel and analyzing channel characteristics and BER performance [C]//Proc. IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering (SIBIRCON). IEEE, 2010: 335–338. DOI: 10.1109/SIBIRCON.2010.5555104 |
43 | LI Y R, CHENG X. New deterministic and statistical simulation models for non-isotropic UAV-MIMO channels [C]//Proc. 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2017. DOI: 10.1109/wcsp.2017.8171101 |
44 | CHENG X, LI Y R. A 3-D geometry-based stochastic model for UAV-MIMO wideband nonstationary channels [J]. IEEE Internet of Things journal, 2019, 6(2): 1654–1662. DOI: 10.1109/JIOT.2018.2874816 |
45 | CAI X S, RODRÍGUEZ-PIÑEIRO J, YIN X F, et al. An empirical air-to-ground channel model based on passive measurements in LTE [J]. IEEE transactions on vehicular technology, 2019, 68(2): 1140–1154. DOI: 10.1109/TVT.2018.2886961 |
46 | YE X K, CAI X S, YIN X F, et al. Air-to-ground big-data-assisted channel modeling based on passive sounding in LTE networks [C]//Proc. IEEE Globecom Workshops (GC Wkshps). IEEE, 2017: 1–6. DOI: 10.1109/GLOCOMW.2017.8269204 |
47 | CUI Z Z, BRISO-RODRÍGUEZ C, GUAN K, et al. Multi-frequency air-to-ground channel measurements and analysis for UAV communication systems [J]. IEEE access, 2020, 8: 110565–110574 |
48 | QIU Z H, CHU X, CALVO-RAMIREZ C, et al. Low altitude UAV air-to-ground channel measurement and modeling in semiurban environments [J]. Wireless communications and mobile computing, 2017, 2017(1): 1587412. DOI: 10.1155/2017/1587412 |
49 | GUTIERREZ R M, YU H G, RONG Y, et al. Time and frequency dispersion characteristics of the UAS wireless channel in residential and mountainous desert terrains [C]//Proc. 14th IEEE Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2017: 516–521. DOI: 10.1109/CCNC.2017.7983161 |
50 | RODRÍGUEZ-PIÑEIRO J, DOMÍNGUEZ-BOLAÑO T, CAI X S, et al. Air-to-ground channel characterization for low-height UAVs in realistic network deployments [J]. IEEE transactions on antennas and propagation, 2021, 69(2): 992–1006. DOI: 10.1109/TAP.2020.3016164 |
51 | TENG E, FALCAO J D, DOMINGUEZ C R, et al. Aerial sensing and characterization of three-dimensional RF fields [C]//Second International Workshop on Robotic Sensor Networks. RNS, 2015: 1–6 |
52 | CAI X S, GONZALEZ-PLAZA A, ALONSO D, et al. Low altitude UAV propagation channel modelling [C]//Proc. 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017: 1443–1447 |
53 | KUNG H T, LIN C K, LIN T H, et al. Measuring diversity on a low-altitude UAV in a ground-to-air wireless 802.11 mesh network [C]//Proc. IEEE Globecom Workshops. IEEE, 2010: 1799–1804. DOI: 10.1109/GLOCOMW.2010.5700251 |
54 | GODDEMEIER N, WIETFELD C. Investigation of air-to-air channel characteristics and a UAV specific extension to the rice model [C]//Proc. IEEE Globecom Workshops (GC Wkshps). IEEE, 2015: 1–5. DOI: 10.1109/GLOCOMW.2015.7414180 |
55 | HAGUE D, KUNG H T, SUTER B. Field experimentation of cots-based UAV networking [C]//Proc. IEEE Military Communications conference. IEEE, 2006: 1–7. DOI: 10.1109/MILCOM.2006.302070 |
56 | AL-HOURANI A, GOMEZ K. Modeling cellular-to-UAV path-loss for suburban environments [J]. IEEE wireless communications letters, 2018, 7(1): 82–85. DOI: 10.1109/LWC.2017.2755643 |
57 | GAO X J, CHEN Z L, LV J W, et al. The correlation matrix model of capacity analysis in unmanned aerial vehicle MIMO channel [J]. WSEAS transactions on communications, 2012, 11(10/12): 476–485 |
58 | SCHNECKENBURGER N, JOST T, SHUTIN D, et al. Measurement of the l-band air-to-ground channel for positioning applications [J]. IEEE transactions on aerospace and electronic systems, 2016, 52(5): 2281–2297. DOI: 10.1109/TAES.2016.150451 |
59 | MENG Y S, LEE Y H. Measurements and characterizations of air-to-ground channel over sea surface at C-band with low airborne altitudes [J]. IEEE transactions on vehicular technology, 2011, 60(4): 1943–1948. DOI: 10.1109/TVT.2011.2136364 |
60 | AFONSO L, SOUTO N, SEBASTIAO P, et al. Cellular for the skies: exploiting mobile network infrastructure for low altitude air-to-ground communications [J]. IEEE aerospace and electronic systems magazine, 2016, 31(8): 4–11. DOI: 10.1109/MAES.2016.150170 |
61 | ZHU Q M, JIANG K L, CHEN X M, et al. A novel 3D non-stationary UAV-MIMO channel model and its statistical properties [J]. China communications, 2018, 15(12): 147–158 |
62 | JIN K, CHENG X, GE X H, et al. Three dimensional modeling and space-time correlation for UAV channels [C]//Proc. IEEE 85th Vehicular Technology Conference (VTC Spring). IEEE, 2017: 1–5. DOI: 10.1109/VTCSpring.2017.8108213 |
63 | JIANG K L, CHEN X M, ZHU Q M, et al. A geometry-based 3D non-stationary UAV-MIMO channel model allowing 3D arbitrary trajectories [C]//Proc 10th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2018: 1–6. DOI: 10.1109/WCSP.2018.8555639 |
64 | ZENG L Z, CHENG X, WANG C X, et al. A 3D geometry-based stochastic channel model for UAV-MIMO channels [C]//Pro. IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2017: 1–5. DOI: 10.1109/WCNC.2017.7925794 |
65 | CHENG X, LI Y R, WANG C X, et al. A 3-D geometry-based stochastic model for unmanned aerial vehicle MIMO ricean fading channels [J]. IEEE Internet of Things journal, 2020, 7(9): 8674–8687. DOI: 10.1109/JIOT.2020.2995707 |
66 | MA Z F, AI B, HE R S, et al. Impact of UAV rotation on MIMO channel characterization for air-to-ground communication systems [J]. IEEE transactions on vehicular technology, 2020, 69(11): 12418–12431. DOI: 10.1109/TVT.2020.3028301 |
67 | MA Z F, AI B, HE R S, et al. Three-dimensional modeling of millimeter-wave MIMO channels for UAV-based communications [C]//Proc. IEEE Global Communications Conference. IEEE, 2020. DOI: 10.1109/globecom42002.2020.9322621 |
68 | LI Y P, WANG W M, GAO H Q, et al. Air-to-ground 3D channel modeling for UAV based on Gauss-Markov mobile model [J]. AEU-international journal of electronics and communications, 2020, 114: 152995. DOI: 10.1016/j.aeue.2019.152995 |
69 | JIANG S, ZHU Q M, WANG C X, et al. Map-based UAV mmWave channel model and characteristics analysis [C]//Proc. IEEE/CIC International Conference on Communications in China (ICCC Workshops). IEEE, 2020. DOI: 10.1109/icccworkshops49972.2020.9209911 |
70 | JIANG H, ZHANG Z C, WU L, et al. Three-dimensional geometry-based UAV-MIMO channel modeling for A2G communication environments [J]. IEEE communications letters, 2018, 22(7): 1438–1441. DOI: 10.1109/LCOMM.2018.2828110 |
71 | BAI L, HUANG Z W, CHENG X. A non-stationary model with time-space consistency for 6G massive MIMO mmWave UAV channels [J]. IEEE transactions on wireless communications, 2023, 22(3): 2048–2064. DOI: 10.1109/TWC.2022.3208635 |
72 | MATOLAK D W, SUN R Y. Air-ground channel characterization for unmanned aircraft systems: the near-urban environment [C]//IEEE Military Communications Conference. IEEE, 2015: 1656–1660. DOI: 10.1109/MILCOM.2015.7357682 |
73 | FENG Q X, MCGEEHAN J, TAMEH E K, et al. Path loss models for air-to-ground radio channels in urban environments [C]//Proc. IEEE 63rd Vehicular Technology Conference. IEEE, 2006: 2901–2905. DOI: 10.1109/VETECS.2006.1683399 |
74 | DANIEL K, PUTZKE M, DUSZA B, et al. Three dimensional channel characterization for low altitude aerial vehicles [C]//Proc. 7th International Symposium on Wireless Communication Systems. IEEE, 2010: 756–760. DOI: 10.1109/ISWCS.2010.5624356 |
75 | AL-HOURANI A, KANDEEPAN S, JAMALIPOUR A. Modeling air-to-ground path loss for low altitude platforms in urban environments [C]//Proc. IEEE Global Communications Conference. IEEE, 2014: 2898–2904. DOI: 10.1109/GLOCOM.2014.7037248 |
76 | AL-HOURANI A, KANDEEPAN S, LARDNER S. Optimal LAP altitude for maximum coverage [J]. IEEE wireless communications letters, 2014, 3(6): 569–572. DOI: 10.1109/LWC.2014.2342736 |
77 | AL-HOURANI A, CHANDRASEKHARAN S, KAANDORP G, et al. Coverage and rate analysis of aerial base stations (Letter) [J]. IEEE transactions on aerospace and electronic systems, 2016, 52(6): 3077–3081. DOI: 10.1109/TAES.2016.160356 |
78 | GODDEMEIER N, DANIEL K, WIETFELD C. Coverage evaluation of wireless networks for unmanned aerial systems [C]//Proc. IEEE Globecom Workshops. IEEE, 2010: 1760–1765. DOI: 10.1109/GLOCOMW.2010.5700244 |
79 | WILLINK T J, SQUIRES C C, COLMAN G W K, et al. Measurement and characterization of low-altitude air-to-ground MIMO channels [J]. IEEE transactions on vehicular technology, 2016, 65(4): 2637–2648 |
80 | ONO F, KAGAWA T, TSUJI H, et al. Measurements on C-band air-to-air channel for coexistence among multiple unmanned aircraft systems [C]//Proc. International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2017: 1160–1164. DOI: 10.1109/ICUAS.2017.7991486 |
81 | YU C Y, LIU Y, CHANG H T, et al. AG channel measurements and characteristics analysis in hilly scenarios for 6G UAV communications [J]. China communications, 2022, 19(11): 32–46 |
82 | MAO K, ZHU Q M, QIU Y H, et al. A UAV-aided real-time channel sounder for highly dynamic nonstationary A2G scenarios [J]. IEEE transactions on instrumentation and measurement, 2023, 72: 1–15. DOI: 10.1109/TIM.2023.3301592 |
83 | LYU Y, WANG W, SUN Y Z, et al. Low-altitude UAV air-to-ground multilink channel modeling and analysis at 2.4 and 5.9 GHz [J]. IEEE antennas and wireless propagation letters, 2023, 22(9): 2135–2139. DOI: 10.1109/LAWP.2023.3278330 |
84 | MOLISCH A F, ASPLUND H, HEDDERGOTT R, et al. The COST259 directional channel model-part I: overview and methodology [J]. IEEE transactions on wireless communications, 2006, 5(12): 3421–3433. DOI: 10.1109/TWC.2006.256966 |
85 | SIMUNEK M, FONTAN F P, PECHAC P, et al. Space diversity gain in urban area low elevation links for surveillance applications [J]. IEEE transactions on antennas and propagation, 2013, 61(12): 6255–6260. DOI: 10.1109/TAP.2013.2280874 |
86 | ZELENY J, PEREZ-FONTAN F, PECHAC P. Initial results from a measurement campaign for low elevation angle links in different environments [C]//Proc. 9th European Conference on Antennas and Propagation (EuCAP). IEEE, 2015: 1–4 |
87 | KO J, HUR S, LEE S, et al. 28 GHz channel measurements and modeling in a ski resort town in pyeongchang for 5G cellular network systems [C]//Proc. 10th European Conference on Antennas and Propagation (EuCAP). IEEE, 2016: 1–5 |
88 | ZHU Q M, NI H R, HUA B Y. A survey of UAV millimetre-wave channel measurement and modeling [J]. Mobile communications, 2022, 46(12): 1–11 |
89 | FAISAL A, SARIEDDEEN H, DAHROUJ H, et al. Ultramassive MIMO systems at terahertz bands: prospects and challenges [J]. IEEE vehicular technology magazine, 2020, 15(4): 33–42. DOI: 10.1109/MVT.2020.3022998 |
90 | SUN Y Z, WANG C X, HUANG J, et al. A 3D non-stationary channel model for 6G wireless systems employing intelligent reflecting surfaces with practical phase shifts [J]. IEEE transactions on cognitive communications and networking, 2021, 7(2): 496–510. DOI: 10.1109/TCCN.2021.3075438 |
91 | CHAIBI H, BELKASMI M, MOHAMMADI Z. UWB outdoor channel characterization and modeling based on measurements [C]//Proc. International Conference on Wireless Networks and Mobile Communications (WINCOM). IEEE, 2015: 1–5. DOI: 10.1109/WINCOM.2015.7381298 |
[1] | DUAN Hongyu, WANG Mengyang, DUO Hao, HE Danping, MA Yihua, LU Bin, ZHONG Zhangdui. Channel Measurement and Analysis of Human Body Radar Cross Section in 26 GHz ISAC Systems [J]. ZTE Communications, 2025, 23(2): 3-10. |
[2] | AI Bo, ZHANG Yuxin, YANG Mi, HE Ruisi, GUO Rongge. A Machine Learning-Based Channel Data Enhancement Platform for Digital Twin Channels [J]. ZTE Communications, 2025, 23(2): 20-30. |
[3] | LU Mengyuan, BAI Lu, HAN Zengrui, HUANG Ziwei, LU Shiliang, CHENG Xiang. 6G Digital Twin Enabled Channel Modeling for Beijing Central Business District [J]. ZTE Communications, 2025, 23(2): 31-45. |
[4] | LIU Xingchen, SUN Shu, TAO Meixia, KAUSHIK Aryan, YAN Hangsong. Channel Knowledge Maps for 6G Wireless Networks: Construction, Applications, and Future Challenges [J]. ZTE Communications, 2025, 23(2): 46-59. |
[5] | ZHAO Yaqiong, KE Hongqin, XU Wei, YE Xinquan, CHEN Yijian. RIS-Assisted Cell-Free MIMO: A Survey [J]. ZTE Communications, 2024, 22(1): 77-86. |
[6] | Stefano Buzzi, Carmen D’Andrea. Massive MIMO 5G Cellular Networks: mm-Wave vs. μ-Wave Frequencies [J]. ZTE Communications, 2017, 15(S1): 41-49. |
[7] | ZHANG Jianhua, WANG Chao, WU Zhongyuan, ZHANG Weite. A Survey of Massive MIMO Channel Measurements and Models [J]. ZTE Communications, 2017, 15(1): 14-22. |
[8] | YIN Xuefeng, ZHANG Nan, Stephen Wang, CHENG Xiang. Measurement-Based Spatial-Consistent Channel Modeling Involving Clusters of Scatterers [J]. ZTE Communications, 2017, 15(1): 28-34. |
[9] | YANG Mi, HE Ruisi, AI Bo, XIONG Lei, DONG Honghui, LI Jianzhi, WANG Wei, FAN Wei, QIN Hongfeng. Measurement-Based Channel Characterization for 5G Wireless Communications on Campus Scenario [J]. ZTE Communications, 2017, 15(1): 8-13. |
[10] | Seyyed Hamed Fouladi, Raúl Chávez-Santiago, Pål Ander Floor, Ilangko Balasingham, and Tor A. Ramstad. Sensing, Signal Processing, and Communication for WBANs [J]. ZTE Communications, 2014, 12(3): 3-12. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||