ZTE Communications ›› 2025, Vol. 23 ›› Issue (2): 3-10.DOI: 10.12142/ZTECOM.202502002
• Special Topic • Previous Articles Next Articles
DUAN Hongyu1,2, WANG Mengyang2, DUO Hao3(), HE Danping2, MA Yihua4, LU Bin5, ZHONG Zhangdui2
Received:
2024-12-13
Online:
2025-06-25
Published:
2025-06-10
About author:
DUAN Hongyu received his BE degree in information engineering from the School of Electronic and Information Engineering, Beijing Jiaotong University, China in 2022. He is currently pursuing a PhD degree at the State Key Laboratory of Advanced Rail Autonomous Operation, Beijing Jiaotong University. His research interests include radio wave propagation, wireless channel modeling, and integrated sensing and communication.Supported by:
DUAN Hongyu, WANG Mengyang, DUO Hao, HE Danping, MA Yihua, LU Bin, ZHONG Zhangdui. Channel Measurement and Analysis of Human Body Radar Cross Section in 26 GHz ISAC Systems[J]. ZTE Communications, 2025, 23(2): 3-10.
Measurement Parameter | Value |
---|---|
Center frequency | 26 GHz |
Bandwidth | 1 GHz |
Delay resolution | 1 ns |
Frequency samples | 201 |
TX and RX heights from the ground | 1.01 m |
Distance between TX and RX | 1.6 m |
Antenna rotation angle towards the human body | ±34° |
Polarization mode | Vertical polarization |
Antenna gain | 22.4 dBi |
Table 1 Configuration parameters of the measurement system
Measurement Parameter | Value |
---|---|
Center frequency | 26 GHz |
Bandwidth | 1 GHz |
Delay resolution | 1 ns |
Frequency samples | 201 |
TX and RX heights from the ground | 1.01 m |
Distance between TX and RX | 1.6 m |
Antenna rotation angle towards the human body | ±34° |
Polarization mode | Vertical polarization |
Antenna gain | 22.4 dBi |
Material | Initialized | Calibrated | ||||||
---|---|---|---|---|---|---|---|---|
Skin | 1 | 0.1 | 1 | 1 | 17.7 | 0.953 1 | 0.88 | 16.5 |
Polyester | 1 | 0.1 | 1 | 1 | 2.1 | 0.750 0 | 0.85 | 15.3 |
Cotton | 1 | 0.1 | 1 | 1 | 2.8 | 0.700 0 | 0.83 | 14.2 |
Table 2 Comparison of initialized and calibrated EM parameters.
Material | Initialized | Calibrated | ||||||
---|---|---|---|---|---|---|---|---|
Skin | 1 | 0.1 | 1 | 1 | 17.7 | 0.953 1 | 0.88 | 16.5 |
Polyester | 1 | 0.1 | 1 | 1 | 2.1 | 0.750 0 | 0.85 | 15.3 |
Cotton | 1 | 0.1 | 1 | 1 | 2.8 | 0.700 0 | 0.83 | 14.2 |
Outfit | Angle/(°) | Measurement Power/dBm | Simulation Power/dBm | Absolute Error/dB |
---|---|---|---|---|
Short | 0 | -45.20 | -45.34 | 0.14 |
45 | -47.37 | -47.70 | 0.36 | |
90 | -49.85 | -48.40 | 1.45 | |
135 | -49.01 | -50.45 | 1.44 | |
180 | -41.36 | -41.52 | 0.16 | |
Long | 0 | -48.05 | -47.93 | 0.12 |
45 | -50.05 | -51.30 | 1.25 | |
90 | -48.71 | -48.85 | 0.14 | |
135 | -51.30 | -51.11 | 0.19 | |
180 | -39.51 | -42.44 | 2.93 |
Table 3 Error statistics
Outfit | Angle/(°) | Measurement Power/dBm | Simulation Power/dBm | Absolute Error/dB |
---|---|---|---|---|
Short | 0 | -45.20 | -45.34 | 0.14 |
45 | -47.37 | -47.70 | 0.36 | |
90 | -49.85 | -48.40 | 1.45 | |
135 | -49.01 | -50.45 | 1.44 | |
180 | -41.36 | -41.52 | 0.16 | |
Long | 0 | -48.05 | -47.93 | 0.12 |
45 | -50.05 | -51.30 | 1.25 | |
90 | -48.71 | -48.85 | 0.14 | |
135 | -51.30 | -51.11 | 0.19 | |
180 | -39.51 | -42.44 | 2.93 |
Outfit | Polarization | Mean Azimuth RCS/dBsm | Polarization | Mean Elevation RCS/dBsm |
---|---|---|---|---|
Short | H-H | -2.78 | H-H | -7.83 |
H-V | -19.3 | H-V | -22.21 | |
V-H | -19.3 | V-H | -22.21 | |
V-V | -2.52 | V-V | -7.45 | |
Long | H-H | -3.91 | H-H | -8.17 |
H-V | -18.82 | H-V | -21.91 | |
V-H | -18.82 | V-H | -21.91 | |
V-V | -3.59 | V-V | -7.54 |
Table 4 Statistics of RCS under different polarization modes
Outfit | Polarization | Mean Azimuth RCS/dBsm | Polarization | Mean Elevation RCS/dBsm |
---|---|---|---|---|
Short | H-H | -2.78 | H-H | -7.83 |
H-V | -19.3 | H-V | -22.21 | |
V-H | -19.3 | V-H | -22.21 | |
V-V | -2.52 | V-V | -7.45 | |
Long | H-H | -3.91 | H-H | -8.17 |
H-V | -18.82 | H-V | -21.91 | |
V-H | -18.82 | V-H | -21.91 | |
V-V | -3.59 | V-V | -7.54 |
1 | INCA S, MROZOWSKI A, PRADO-ALVAREZ D, et al. Angular correlation study of sensing and communication channels in V2X scenarios for 6G ISAC usage [C]//Proc. IEEE Globecom Workshops (GC Wkshps). IEEE, 2023: 1189– 1194. DOI: 10.1109/GCWkshps58843.2023.10465114 |
2 | DE PASQUALE G, SARRI A, BONOPERA C, et al. RCS of human being physiological movements in the 1–10 GHz bandwidth: theory, simulation and measurements [C]//Proc. IEEE Radar Conference. IEEE, 2008: 1– 6. DOI: 10.1109/RADAR.2008.4720983 |
3 | ISHAK K, APPENRODT N, DICKMANN J, et al. Advanced radar micro-Doppler simulation environment for human motion applications [C]//Proc. IEEE Radar Conference (RadarConf). IEEE, 2019: 1– 6. DOI: 10.1109/RADAR.2019.8835755 |
4 | KIRIAZI J E, BORIC-LUBECKE O, LUBECKE V M. Radar cross section of human cardiopulmonary activity for recumbent subject [C]// Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009: 4808– 4811. DOI: 10.1109/IEMBS.2009.5332634 |
5 | KIRIAZI J E, BORIC-LUBECKE O, LUBECKE V M. Modeling of human torso time-space characteristics for respiratory effective RCS measurements with Doppler radar [C]//Proc. IEEE MTT-S International Microwave Symposium. IEEE, 2011: 1. DOI: 10.1109/MWSYM.2011.5973284 |
6 | HONMA N, SASAKAWA D, SHIRAKI N, et al. A state-machine-based approach for human activity classification using MIMO radar [C]// Proceedings of International Symposium on Antennas and Propagation (ISAP). IEEE, 2021: 1– 2. DOI: 10.23919/ISAP47258.2021.9614433 |
7 | SHEN Y, OU P, CHEN F K, et al. Reconfigurable intelligent surface-assisted channel characteristics in 5G high-speed railway scenario [J]. Journal of Beijing Jiaotong University, 2023, 47( 2): 23– 35. DOI: 10.11860/j.issn.1673-0291.20220098 |
8 | HAN F Y, DING J M, FEI D, et al. Channel parameter acquisition and simulation evaluation of RIS-aided wireless communication system [J]. Journal of Beijing Jiaotong University. 2023, 47( 5): 63– 71. DOI: 10.11860/j.issn.1673-0291.20220147 |
9 | ABADPOUR S, PAULI M, SCHYR C, et al. Angular resolved RCS and Doppler analysis of human body parts in motion [J]. IEEE transactions on microwave theory and techniques, 2023, 71( 4): 1761– 1771. DOI: 10.1109/TMTT.2022.3218304 |
10 | SINGH A D, RAM S S, VISHWAKARMA S. Simulation of the radar cross-section of dynamic human motions using virtual reality data and ray tracing [C]// Proc. IEEE Radar Conference (RadarConf 18. IEEE, 2018: 1555– 1560. DOI: 10.1109/RADAR.2018.8378798 |
11 | FANG C H, QIN Y, HU C-F. Numerical study of human head RCS and SAR at 0.9–2.45 GHz [C]// 2017 International Applied Computational Electromagnetics Society Symposium (ACES). IEEE, 2017: 1– 2 |
12 | LEE A, GAO X M, XU J, et al. Effects of respiration depth on human body radar cross section using 2.4 GHz continuous wave radar [C]//Proc. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017: 4070– 4073. DOI: 10.1109/EMBC.2017.8037750 |
13 | TIEN T V, OUVRY L, SIBILLE A. Time domain complex radar cross section of human body for breath-activity monitoring [C]//Proc. 11th European Conference on Antennas and Propagation (EUCAP). IEEE, 2017: 421– 425. DOI: 10.23919/EuCAP.2017.7928648 |
14 | YANG B, LIANG X, LIU S N, et al. Intelligent 6G wireless network with multi-dimensional information perception [J]. ZTE communications, 2023, 21( 2): 3– 10. 10.12142/ZTECOM.202302002 |
15 | LIU H P, ZHANG X Y, ZHOU A F, et al. Indoor environment and human sensing via millimeter wave radio: a review [J]. ZTE communications, 2021, 19( 3): 22– 29. DOI: 10.12142/ZTECOM.202103004 |
16 | SCHUBERT E, KUNERT M, MENZEL W, et al. Human RCS measurements and dummy requirements for the assessment of radar based active pedestrian safety systems [C]// 14th International Radar Symposium (IRS). IEEE, 2013: 752– 757 |
17 | ABADPOUR S, MARAHRENS S, PAULI M, et al. Backscattering behavior of vulnerable road users based on high-resolution RCS measurements [J]. IEEE transactions on microwave theory and techniques, 2022, 70( 3): 1582– 1593. DOI: 10.1109/TMTT.2021.3131156 |
18 | MANFREDI G, RUSSO P, DE LEO A, et al. Efficient simulation tool to characterize the radar cross section of a pedestrian in near field [J]. Progress in electromagnetics research C, 2020, 100: 145– 159. DOI: 10.2528/pierc19112701 |
19 | HE D P, AI B, GUAN K, et al. The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: a tutorial [J]. IEEE communications surveys & tutorials, 2019, 21( 1): 10– 27. DOI: 10.1109/COMST.2018.2865724 |
20 | HE D P, GUAN K, YAN D, et al. Physics and AI-based digital twin of multi-spectrum propagation characteristics for communication and sensing in 6G and beyond [J]. IEEE journal on selected areas in communications, 2023, 41( 11): 3461– 3473. DOI: 10.1109/JSAC.2023.3310108 |
21 | DEGLI-ESPOSTI V, FUSCHINI F, VITUCCI E M, et al. Measurement and modelling of scattering from buildings [J]. IEEE transactions on antennas and propagation, 2007, 55( 1): 143– 153. DOI: 10.1109/TAP.2006.888422 |
22 | HUANG J H, ZHOU J J, DENG Y. Near-to-far field RCS calculation using correction optimization technique [J]. Electronics, 2023, 12( 12): 2711. DOI: 10.3390/electronics12122711 |
[1] | AI Bo, ZHANG Yuxin, YANG Mi, HE Ruisi, GUO Rongge. A Machine Learning-Based Channel Data Enhancement Platform for Digital Twin Channels [J]. ZTE Communications, 2025, 23(2): 20-30. |
[2] | CHEN Peng, LIU Yajuan, WEI Wentong, WANG Wei, LI Na. Air-to-Ground Channel Measurement and Modeling for Low-Altitude UAVs: A Survey [J]. ZTE Communications, 2025, 23(2): 60-75. |
[3] | AN Hao, LIU Ting, HE Danping, MA Yihua, DOU Jianwu. Measurement and Analysis of Radar-Cross-Section of UAV at 21–26 GHz Frequency Band [J]. ZTE Communications, 2025, 23(1): 107-114. |
[4] | TANG Shuntian, WANG Xinyi, XIA Fanghao, FEI Zesong. Kullback-Leibler Divergence Based ISAC Constellation and Beamforming Design in the Presence of Clutter [J]. ZTE Communications, 2024, 22(3): 4-12. |
[5] | YU Chao, LYU Bojie, QIU Haoyu, WANG Rui. Trajectory Tracking for MmWave Communication Systems via Cooperative Passive Sensing [J]. ZTE Communications, 2024, 22(3): 29-36. |
[6] | DU Ruolin, WEI Zhiqiang, YANG Zai. Integrated Sensing and Communication: Who Benefits More? [J]. ZTE Communications, 2024, 22(3): 37-47. |
[7] | WEI Zhiqing, ZHANG Yongji, JI Danna, LI Chenfei. Sensing and Communication Integrated Fast Neighbor Discovery for UAV Networks [J]. ZTE Communications, 2024, 22(3): 69-82. |
[8] | ZHANG Jianhua, WANG Chao, WU Zhongyuan, ZHANG Weite. A Survey of Massive MIMO Channel Measurements and Models [J]. ZTE Communications, 2017, 15(1): 14-22. |
[9] | YANG Mi, HE Ruisi, AI Bo, XIONG Lei, DONG Honghui, LI Jianzhi, WANG Wei, FAN Wei, QIN Hongfeng. Measurement-Based Channel Characterization for 5G Wireless Communications on Campus Scenario [J]. ZTE Communications, 2017, 15(1): 8-13. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 28
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 52
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||