ZTE Communications ›› 2022, Vol. 20 ›› Issue (1): 3-13.DOI: 10.12142/ZTECOM.202201002
• Special Topic • Previous Articles Next Articles
YUAN Yifei(), GU Qi, WANG Anna, WU Dan, LI Ya
Received:
2021-11-11
Online:
2022-03-25
Published:
2022-04-06
About author:
YUAN Yifei (YUAN Yifei, GU Qi, WANG Anna, WU Dan, LI Ya. Recent Progress in Research and Development of Reconfigurable Intelligent Surface[J]. ZTE Communications, 2022, 20(1): 3-13.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202201002
Figure 2 Setup in Ref. [4]: (a) simulation layout for the RIS-based multi-user cellular network and (b) spectral efficiency vs. the number of RIS elements
Figure 4 An alternating weighted minimum mean squared error (WMMSE) algorithm for joint optimization of reconfigurable intelligent surface (RIS) elements with base station (BS) precoding
1 | LU Z H, YUAN Y F, WU H, et al. 5G massive MIMO enhancements [M]. Beijing, China: Telecom & Post Press, 2021 |
2 |
DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research and the road ahead [J]. IEEE journal on selected areas in communications, 2020, 38 (11): 2450–2525. DOI: 10.1109/JSAC.2020.3007211
DOI |
3 | IEEE. Emerging Technology Initiative of RIS [EB/OL]. [2021-11-11]. |
4 |
ZHANG H L, DI B Y, HAN Z, et al. Reconfigurable intelligent surface assisted multi-user communications: how many reflective elements do we need [J]. IEEE wireless communications letters, 2021, 10(5): 1098–1102. DOI: 10.1109/LWC.2021.3058637
DOI |
5 |
ZAPPONE A, DI RENZO M, XI X J, et al. On the optimal number of reflecting elements for reconfigurable intelligent surfaces [J]. IEEE wireless communications letters, 2021, 10 (3): 464–468. DOI: 10.1109/LWC.2020.3034686
DOI |
6 |
WEI X H, SHEN D C, DAI L L. Channel estimation for RIS assisted wireless communications—part I: fundamentals, solutions, and future opportunities [J]. IEEE communications letters, 2021, 25 (5): 1398–1402. DOI: 10.1109/LCOMM.2021.3052822
DOI |
7 |
WANG Z R, LIU L, CUI S G. Channel estimation for intelligent reflecting surface assisted multiuser communications: framework, algorithms and analysis [J]. IEEE transactions on wireless communications, 2020, 19 (10): 6607–6620. DOI: 10.1109/TWC.2020.3004330
DOI |
8 |
WANG P L, FANG J, DUAN H P, et al. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems [J]. IEEE signal processing letters, 2020, 27 (5): 905–909. DOI: 10.1109/LSP.2020.2998357
DOI |
9 |
GU Q, WU D, SU X, et al. Performance comparisons between reconfigurable intelligent surface and full/half-duplex relays [C]//94th Vehicular Technology Conference (VTC2021-Fall). IEEE, 2021. DOI: 10.1109/VTC2021-Fall52928.2021.9625201
DOI |
10 |
LIN S, ZHENG B X, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces with reflection pattern modulation: beamforming design and performance analysis [J]. IEEE transactions on wireless communications, 2021, 20 (2): 741–754. DOI: 10.1109/TWC.2020.3028198
DOI |
11 |
WANG P L, FANG J, DAI L L, et al. Joint transceiver and large intelligent surface design for massive MIMO mmWave systems [J]. IEEE transactions on wireless communications, 2021, 20 (2): 1052–1064. DOI: 10.1109/TWC.2020.3030570
DOI |
12 |
ZHOU Z Y, GE N, WANG Z C, et al. Joint transmit precoding and reconfigurable intelligent surface phase adjustment: a decomposition-aided channel estimation approach [J]. IEEE transactions on communications, 2021, 69 (2): 1228–1243. DOI: 10.1109/TCOMM.2020.3034259
DOI |
13 |
PAN C H, REN H, WANG K Z, et al. Multicell MIMO communications relying on intelligent reflecting surfaces [J]. IEEE transactions on wireless communications, 2020, 19 (8): 5218–5233. DOI: 10.1109/TWC.2020.2990766
DOI |
14 | ELLINGSON S W, Path loss in reconfigurable intelligent surface-enabled channels [EB/OL]. (2019-12-14)[2021-11-11]. |
15 | TANG W K, CHEN M Z, CHEN X Y, et al. Wireless communications with reconfigurable intelligent surface: path loss modeling and experimental measurement [EB/OL]. (2019-11-13)[2021-11-11] |
16 |
YILDIRIM I, UYRUS A, BASAR E. Modeling and analysis of reconfigurable intelligent surfaces for indoor and outdoor applications in future wireless networks [J]. IEEE transactions on communications, 2021, 69 (2): 1290–1301. DOI: 10.1109/TCOMM.2020.3035391
DOI |
17 |
SUN G Q, HE R S, MA Z F, et al. A 3D geometry-based non-stationary MIMO channel model for RIS-assisted communications [C]//94th Vehicular Technology Conference (VTC2021-Fall). IEEE, 2021. DOI: 10.1109/VTC2021-Fall52928.2021.9625374
DOI |
18 |
DOU J W, CHEN Y J, ZHANG N, et al. On the channel modeling of intelligent controllable electro-magnetic surface [J]. Chinese journal of radio science, 2021, 36 (3): 368–377 (in Chinese). DOI: 10.12265/j.cjors.2020195
DOI |
19 | PEI X L, YIN H F, TAN L, et al. RIS-aided wireless communications: prototyping, adaptive beamforming, and indoor/outdoor field trials [EB/OL]. (2019-11-13)[2021-11-11]. |
20 | 3GPP. Study on channel model for frequencies from 0.5 to 100 GHz: TR 38.901 [S]. 2019 |
[1] | DU Ruolin, WEI Zhiqiang, YANG Zai. Integrated Sensing and Communication: Who Benefits More? [J]. ZTE Communications, 2024, 22(3): 37-47. |
[2] | ZHU Yuting, XU Zhiyu, ZHANG Hongtao. Cooperative Distributed Beamforming Design for Multi-RIS Aided Cell-Free Systems [J]. ZTE Communications, 2024, 22(2): 99-106. |
[3] | YANG Bei, LIANG Xin, LIU Shengnan, JIANG Zheng, ZHU Jianchi, SHE Xiaoming. Intelligent 6G Wireless Network with Multi-Dimensional Information Perception [J]. ZTE Communications, 2023, 21(2): 3-10. |
[4] | YOU Qian, XU Qian, YANG Xin, ZHANG Tao, CHEN Ming. RIS-Assisted UAV-D2D Communications Exploiting Deep Reinforcement Learning [J]. ZTE Communications, 2023, 21(2): 61-69. |
[5] | WANG Yiji, WEN Dingzhu, MAO Yijie, SHI Yuanming. RIS-Assisted Federated Learning in Multi-Cell Wireless Networks [J]. ZTE Communications, 2023, 21(1): 25-37. |
[6] | LU Haitao, YAN Xincheng, ZHOU Qiang, DAI Jiulong, LI Rui. Key Intrinsic Security Technologies in 6G Networks [J]. ZTE Communications, 2022, 20(4): 22-31. |
[7] | WANG Pengfei, SONG Wei, SUN Geng, WEI Zongzheng, ZHANG Qiang. Air-Ground Integrated Low-Energy Federated Learning for Secure 6G Communications [J]. ZTE Communications, 2022, 20(4): 32-40. |
[8] | CHANG Mingyang, HAN Jiaqi, MA Xiangjin, XUE Hao, WU Xiaonan, LI Long, CUI Tiejun. Programmable Metasurface for Simultaneously Wireless Information and Power Transfer System [J]. ZTE Communications, 2022, 20(2): 48-62. |
[9] | HOU Xiaolin, LI Xiang, WANG Xin, CHEN Lan, SUYAMA Satoshi. Some Observations and Thoughts about Reconfigurable Intelligent Surface Application for 5G Evolution and 6G [J]. ZTE Communications, 2022, 20(1): 14-20. |
[10] | XU Yongjun, YANG Zhaohui, HUANG Chongwen, YUEN Chau, GUI Guan. Resource Allocation for Two‑Tier RIS‑Assisted Heterogeneous NOMA Networks [J]. ZTE Communications, 2022, 20(1): 36-47. |
[11] | SHAO Zhichao, YAN Wenjing, YUAN Xiaojun. Markovian Cascaded Channel Estimation for RIS Aided Massive MIMO Using 1‑Bit ADCs and Oversampling [J]. ZTE Communications, 2022, 20(1): 48-56. |
[12] | ZHOU Mingyong, CHEN Xiangyu, TANG Wankai, KE Jun Chen, JIN Shi, CHENG Qiang, CUI Tie Jun. Dual‑Polarized RIS‑Based STBC Transmission with Polarization Coupling Analysis [J]. ZTE Communications, 2022, 20(1): 63-75. |
[13] | WU Huici, LI Hanjie, TAO Xiaofeng. Green Air-Ground Integrated Heterogeneous Network in 6G Era [J]. ZTE Communications, 2021, 19(1): 39-47. |
[14] | JIANG Wei. Device-to-Device Based Cooperative Relaying for 5G Network: A Comparative Review [J]. ZTE Communications, 2017, 15(S1): 60-66. |
[15] | WANG Shuang, HOU Ronghui. Network Coding-Based Interference Management Scheme in D2D Communications [J]. ZTE Communications, 2017, 15(2): 48-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||