ZTE Communications ›› 2022, Vol. 20 ›› Issue (4): 32-40.DOI: 10.12142/ZTECOM.202204005
• Special Topic • Previous Articles Next Articles
WANG Pengfei1(), SONG Wei1, SUN Geng2,3, WEI Zongzheng1, ZHANG Qiang1
Received:
2022-09-09
Online:
2022-12-31
Published:
2022-12-30
About author:
WANG Pengfei (Supported by:
WANG Pengfei, SONG Wei, SUN Geng, WEI Zongzheng, ZHANG Qiang. Air-Ground Integrated Low-Energy Federated Learning for Secure 6G Communications[J]. ZTE Communications, 2022, 20(4): 32-40.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202204005
1 |
DANG S P, AMIN O, SHIHADA B, et al. What should 6G Be? [J]. Nature electronics, 2020, 3(1): 20–29. DOI: 10.1038/s41928-019-0355-6
DOI |
2 |
GUI G, LIU M, TANG F X, et al. 6G: opening new horizons for integration of comfort, security, and intelligence [J]. IEEE wireless communications, 2020, 27(5): 126–132. DOI: 10.1109/MWC.001.1900516
DOI |
3 |
WANG C G, RAHMAN A. Quantum-enabled 6G wireless networks: opportunities and challenges [J]. IEEE wireless communications, 2022, 29(1): 58–69. DOI: 10.1109/MWC.006.00340
DOI |
4 |
WANG M H, ZHU T Q, ZHANG T, et al. Security and privacy in 6G networks: new areas and new challenges [J]. Digital communications and networks, 2020, 6(3): 281–291. DOI: 10.1016/j.dcan.2020.07.003
DOI |
5 |
NGUYEN V L, LIN P C, CHENG B C, et al. Security and privacy for 6G: a survey on prospective technologies and challenges [J]. IEEE communications surveys & tutorials, 2021, 23(4): 2384–2428. DOI: 10.1109/COMST.2021.3108618
DOI |
6 | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [EB/OL]. (2016-02-17)[2022-09-01]. |
7 |
YANG Q, LIU Y, CHEN T J, et al. Federated machine learning [J]. ACM transactions on intelligent systems and technology, 2019, 10(2): 1–19. DOI: 10.1145/3298981
DOI |
8 |
LI T, SAHU A K, TALWALKAR A, et al. Federated learning: Challenges, methods, and future directions [J]. IEEE signal processing magazine, 2020, 37(3): 50–60. DOI: 10.1109/MSP.2020.2975749
DOI |
9 |
YANG Z H, CHEN M Z, WONG K K, et al. Federated learning for 6G: Applications, challenges, and opportunities [J]. Engineering, 2022, 8: 33–41. DOI: 10.1016/j.eng.2021.12.002
DOI |
10 |
LIU Y, PENG J L, KANG J W, et al. A secure federated learning framework for 5G networks [J]. IEEE wireless communications, 2020, 27(4): 24–31. DOI: 10.1109/MWC.01.1900525
DOI |
11 |
CHEN M Z, GÜNDÜZ D, HUANG K B, et al. Distributed learning in wireless networks: recent progress and future challenges [J]. IEEE journal on selected areas in communications, 2021, 39(12): 3579–3605. DOI: 10.1109/JSAC.2021.3118346
DOI |
12 |
YANG M, WANG X M, QIAN H, et al. An improved federated learning algorithm for privacy preserving in cybertwin-driven 6G system [J]. IEEE transactions on industrial informatics, 2022, 18(10): 6733–6742. DOI: 10.1109/TII.2022.3149516
DOI |
13 |
YUAN Z W, TANG H, WANG P F, et al. Human-UAV collaborative task scheduling for 360° video generating in intelligent transportation [C]//The 8th International Conference on Virtual Reality (ICVR). IEEE, 2022: 407–414. DOI: 10.1109/ICVR55215.2022.9847919
DOI |
14 |
WANG P F, YAN Z H, HAN G J, et al. A2E2: Aerial-assisted energy-efficient edge sensing in intelligent public transportation systems [J]. Journal of systems architecture, 2022, 129: 102617. DOI: 10.1016/j.sysarc.2022.102617
DOI |
15 |
JING Y Q, QU Y B, DONG C, et al. Joint UAV location and resource allocation for air-ground integrated federated learning [C]//IEEE Global Communications Conference. IEEE, 2021: 1–6. DOI: 10.1109/GLOBECOM46510.2021.9685150
DOI |
16 |
WANG P F, PAN Y Z, LIN C, et al. Graph optimized data offloading for crowd-AI hybrid urban tracking in intelligent transportation systems [J]. IEEE transactions on intelligent transportation systems, 2022: Early Access. DOI: 10.1109/TITS.2022.3141885
DOI |
17 |
TRAN N H, BAO W, ZOMAYA A, et al. Federated learning over wireless networks: optimization model design and analysis [C]//IEEE Conference on Computer Communications. IEEE, 2019: 1387–1395. DOI: 10.1109/INFOCOM.2019.8737464
DOI |
18 | HAMER J, MOHRI M, SURESH A T, et al. FedBoost: communication-efficient algorithms for federated learning [C]//International Conference on Machine Learning. ICML, 2020: 3973–3983 |
19 |
ZENG T C, SEMIARI O, MOZAFFARI M, et al. Federated learning in the sky: Joint power allocation and scheduling with UAV swarms [C]//IEEE International Conference on Communications. IEEE, 2020: 1–6. DOI: 10.1109/ICC40277.2020.9148776
DOI |
20 |
SHIRI H, PARK J, BENNIS M. Communication-efficient massive UAV online path control: Federated learning meets mean-field game theory [J]. IEEE transactions on communications, 2020, 68(11): 6840–6857. DOI: 10.1109/TCOMM.2020.3017281
DOI |
21 |
PHAM Q V, ZENG M, RUBY R, et al. UAV communications for sustainable federated learning [J]. IEEE transactions on vehicular technology, 2021, 70(4): 3944–3948. DOI: 10.1109/TVT.2021.3065084
DOI |
22 |
QU Y B, DONG C, ZHENG J C, et al. Empowering edge intelligence by air-ground integrated federated learning [J]. IEEE network, 2021, 35(5): 34–41. DOI: 10.1109/MNET.111.2100044
DOI |
23 |
JING Y Q, QU Y B, DONG C, et al. Joint UAV location and resource allocation for air-ground integrated federated learning [C]//IEEE Global Communications Conference. IEEE, 2021: 1–6. DOI: 10.1109/GLOBECOM46510.2021. 9685150
DOI |
24 |
WANG P F, ZHAO Y A, OBAIDAT M S, et al. Blockchain-enhanced federated learning market with social Internet of Things [J]. IEEE journal on selected areas in communications, 2022, 40(12): 3405–3421. DOI: 10.1109/JSAC.2022.3213314
DOI |
25 |
PHAM Q V, LE M, HUYNH-THE T, et al. Energy-efficient federated learning over UAV-enabled wireless powered communications [J]. IEEE transactions on vehicular technology, 2022, 71(5): 4977–4990. DOI: 10.1109/TVT.2022.3150004
DOI |
26 |
LU J X, WAN S, CHEN X H, et al. Beyond empirical models: pattern formation driven placement of UAV base stations [J]. IEEE transactions on wireless communications, 2018, 17(6): 3641–3655. DOI: 10.1109/TWC.2018.2812167
DOI |
27 |
LIU L S, XIONG K, LU Y, et al. Age-constrained energy minimization in UAV-assisted wireless powered sensor networks: a DQN-based approach [C]//IEEE Conference on Computer Communications Workshops. IEEE, 2021: 1–2. DOI: 10.1109/INFOCOMWKSHPS51825.2021.9484487
DOI |
[1] | GU Cheng, LI Baochun. Hierarchical Federated Learning Architectures for the Metaverse [J]. ZTE Communications, 2024, 22(2): 39-48. |
[2] | YAN Yuna, LIU Ying, NI Tao, LIN Wensheng, LI Lixin. Content Popularity Prediction via Federated Learning in Cache-Enabled Wireless Networks [J]. ZTE Communications, 2023, 21(2): 18-24. |
[3] | ZHAO Moke, HUANG Yansong, LI Xuan. Federated Learning for 6G: A Survey From Perspective of Integrated Sensing, Communication and Computation [J]. ZTE Communications, 2023, 21(2): 25-33. |
[4] | YAN Jintao, CHEN Tan, XIE Bowen, SUN Yuxuan, ZHOU Sheng, NIU Zhisheng. Hierarchical Federated Learning: Architecture, Challenges, and Its Implementation in Vehicular Networks [J]. ZTE Communications, 2023, 21(1): 38-45. |
[5] | DING Yahao, SHIKH‑BAHAEI Mohammad, YANG Zhaohui, HUANG Chongwen, YUAN Weijie. Secure Federated Learning over Wireless Communication Networks with Model Compression [J]. ZTE Communications, 2023, 21(1): 46-54. |
[6] | ZHANG Weiting, LIANG Haotian, XU Yuhua, ZHANG Chuan. Reliable and Privacy-Preserving Federated Learning with Anomalous Users [J]. ZTE Communications, 2023, 21(1): 15-24. |
[7] | WANG Yiji, WEN Dingzhu, MAO Yijie, SHI Yuanming. RIS-Assisted Federated Learning in Multi-Cell Wireless Networks [J]. ZTE Communications, 2023, 21(1): 25-37. |
[8] | NAN Yucen, FANG Minghao, ZOU Xiaojing, DOU Yutao, Albert Y. ZOMAYA. A Collaborative Medical Diagnosis System Without Sharing Patient Data [J]. ZTE Communications, 2022, 20(3): 3-16. |
[9] | HAN Xuming, GAO Minghan, WANG Limin, HE Zaobo, WANG Yanze. A Survey of Federated Learning on Non-IID Data [J]. ZTE Communications, 2022, 20(3): 17-26. |
[10] | LIU Qinbo, JIN Zhihao, WANG Jiabo, LIU Yang, LUO Wenjian. MSRA-Fed: A Communication-Efficient Federated Learning Method Based on Model Split and Representation Aggregate [J]. ZTE Communications, 2022, 20(3): 35-42. |
[11] | TANG Bo, ZHANG Chengming, WANG Kewen, GAO Zhengguang, HAN Bingtao. Neursafe-FL: A Reliable, Efficient, Easy-to- Use Federated Learning Framework [J]. ZTE Communications, 2022, 20(3): 43-53. |
[12] | LIU Junyu, YANG Yongjian, WANG En. BPPF: Bilateral Privacy-Preserving Framework for Mobile Crowdsensing [J]. ZTE Communications, 2021, 19(2): 20-28. |
[13] | SHI Wenqi, SUN Yuxuan, HUANG Xiufeng, ZHOU Sheng, NIU Zhisheng. Scheduling Policies for Federated Learning in Wireless Networks: An Overview [J]. ZTE Communications, 2020, 18(2): 11-19. |
[14] | YANG Howard H., ZHAO Zhongyuan, QUEK Tony Q. S.. Enabling Intelligence at Network Edge:An Overview of Federated Learning [J]. ZTE Communications, 2020, 18(2): 2-10. |
[15] | YANG Mengmeng. Attacks and Countermeasures in Social Network Data Publishing [J]. ZTE Communications, 2016, 14(S0): 2-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||