ZTE Communications ›› 2021, Vol. 19 ›› Issue (4): 63-70.DOI: 10.12142/ZTECOM.202104007
• Special Topic • Previous Articles Next Articles
MA Yiyan1, MA Guoyu1(), WANG Ning2, ZHONG Zhangdui1, AI Bo1,3()
Received:
2021-10-09
Online:
2021-12-25
Published:
2022-01-04
About author:
MA Yiyan received the B.S. degree in applied physics from Beijing Jiaotong University, China in 2019, and is currently working toward the Ph.D. degree at the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University. His current research interests include the field of Internet of Things and massive machine type communications.|MA Guoyu (Supported by:
MA Yiyan, MA Guoyu, WANG Ning, ZHONG Zhangdui, AI Bo. OTFS Enabled NOMA for MMTC Systems over LEO Satellite[J]. ZTE Communications, 2021, 19(4): 63-70.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202104007
Figure 3 Resource allocation and data interleaving demonstration of orthogonal time frequency space (OTFS)-tandem spreading multiple access (TSMA) in Ref. [19]
1 | 3GPP. Solutions for NR to support non-terrestrial networks (NTN) (Release 16): TR 38.821 v16.0.0 [S]. 2019 |
2 |
SHEN X M S), CHENG N, ZHOU H B, et al. Air-space-ground integrated network technology: exploration and prospects [J]. Chinese journal on Internet of Things, 2020, 4(3): 3–19. DOI: 10.11959/j.issn.2096-3750.2020.00142
DOI |
3 |
LIBERG O, LÖWENMARK S E, EULER S, et al. Narrowband Internet of Things for non-terrestrial networks [J]. IEEE communications standards magazine, 2020, 4(4): 49–55. DOI: 10.1109/MCOMSTD.001.2000004
DOI |
4 |
YAN X J, AN K, LIANG T, et al. The application of power-domain non-orthogonal multiple access in satellite communication networks [J]. IEEE access, 2019, 7: 63531–63539. DOI: 10.1109/ACCESS.2019.2917060
DOI |
5 |
CHAE S H, JEONG C, LEE K. Cooperative communication for cognitive satellite networks [J]. IEEE transactions on communications, 2018, 66(11): 5140–5154. DOI: 10.1109/TCOMM.2018.2850813
DOI |
6 |
PEREZ-NEIRA A I, CAUS M, VAZQUEZ M A. Non-orthogonal transmission techniques for multibeam satellite systems [J]. IEEE communications magazine, 2019, 57(12): 58–63. DOI: 10.1109/MCOM.001.1900249
DOI |
7 |
CHU J H, CHEN X M, ZHONG C J, et al. Robust design for NOMA-based multibeam LEO satellite Internet of Things [J]. IEEE Internet of Things journal, 2021, 8(3): 1959–1970. DOI: 10.1109/JIOT.2020.3015995
DOI |
8 |
LIU X, ZHAI X B, LU W D, et al. QoS-guarantee resource allocation for multibeam satellite industrial Internet of Things with NOMA [J]. IEEE transactions on industrial informatics, 2021, 17(3): 2052–2061. DOI: 10.1109/TII.2019.2951728
DOI |
9 |
ALI I, AL-DHAHIR N, HERSHEY J E. Doppler characterization for LEO satellites [J]. IEEE transactions on communications, 1998, 46(3): 309–313. DOI: 10.1109/26.662636
DOI |
10 |
YOU M H, LEE S P, HAN Y. Adaptive compensation method using the prediction algorithm for the doppler frequency shift in the LEO mobile satellite communication system [J]. ETRI journal, 2000, 22(4): 32–39. DOI: 10.4218/etrij.00.0100.0404
DOI |
11 |
LIN J N, HOU Z W, ZHOU Y Q, et al. Map estimation based on Doppler characterization in broadband and mobile LEO satellite communications [C]//83rd Vehicular Technology Conference (VTC Spring). Nanjing, China: IEEE, 2016: 1–5. DOI: 10.1109/VTCSpring.2016.7504336
DOI |
12 |
LIU Y J, ZHU X, LIM E G, et al. High-robustness and low-complexity joint estimation of TOAs and CFOs for multiuser SIMO OFDM systems [J]. IEEE transactions on vehicular technology, 2018, 67(8): 7739–7743. DOI: 10.1109/TVT.2018.2821152
DOI |
13 |
TIAN D, ZHAO Y, TONG J F, et al. Frequency offset estimation for 5G based LEO satellite communication systems [C]//IEEE/CIC International Conference on Communications in China (ICCC). Changchun, China: IEEE, 2019: 647–652. DOI: 10.1109/ICCChina.2019.8855824
DOI |
14 |
PAN M G, HU J L, YUAN J H, et al. An efficient blind Doppler shift estimation and compensation method for LEO satellite communications [C]//20th International Conference on Communication Technology (ICCT). Nanning, China: IEEE, 2020: 643–648. DOI: 10.1109/ICCT50939.2020.9295821
DOI |
15 |
KODHELI O, ANDRENACCI S, MATURO N, et al. An uplink UE group-based scheduling technique for 5G mMTC systems over LEO satellite [J]. IEEE access, 2019, 7: 67413–67427. DOI: 10.1109/ACCESS.2019.2918581
DOI |
16 |
ZHANG Z J, LI Y, HUANG C W, et al. User activity detection and channel estimation for grant-free random access in LEO satellite-enabled Internet of Things [J]. IEEE Internet of Things journal, 2020, 7(9): 8811–8825. DOI: 10.1109/JIOT.2020.2997336
DOI |
17 |
DING Z G, SCHOBER R, FAN P Z, et al. OTFS-NOMA: an efficient approach for exploiting heterogenous user mobility profiles [J]. IEEE transactions on communications, 2019, 67(11): 7950–7965. DOI: 10.1109/TCOMM.2019.2932934
DOI |
18 |
DEKA K, THOMAS A, SHARMA S. OTFS-SCMA: A code-domain NOMA approach for orthogonal time frequency space modulation [J]. IEEE transactions on communications, 2021, 69(8): 5043–5058. DOI: 10.1109/TCOMM.2021.3075237
DOI |
19 |
MA Y Y, MA G Y, WANG N, et al. OTFS-TSMA for massive Internet of Things in high-speed railway [J]. IEEE transactions on wireless communications, Early access, 2021. DOI: 10.1109/TWC.2021.3098033
DOI |
20 |
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation [C]//Wireless Communications and Networking Conference (WCNC). San Francisco, USA: IEEE, 2017: 1–6. DOI: 10.1109/WCNC.2017.7925924
DOI |
21 |
RAVITEJA P, PHAN K T, HONG Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation [J]. IEEE transactions on wireless communications, 2018, 17(10): 6501–6515. DOI: 10.1109/TWC.2018.2860011
DOI |
22 |
WEI Z, YUAN W, LI S, et al. Orthogonal time-frequency space modulation: a promising next generation waveform [J]. IEEE wireless communications. 2021, 28(4): 136–144. DOI: 10.1109/MWC.001.2000408
DOI |
23 |
YUAN W, WEI Z, YUAN J, et al. A simple variational bayes detector for orthogonal time frequency space (OTFS) modulation [J]. IEEE transactions on vehicular technology, 2020, 69(7): 7976–7980. DOI: 10.1109/TVT.2020.2991443
DOI |
24 |
LI S, YUAN W, WEI Z, et al. Cross domain iterative detection for orthogonal time frequency space modulation [J]. IEEE transactions on wireless communications, 2021, early access. DOI: 10.1109/TWC.2021.3110125
DOI |
25 |
LI S, YUAN W, WEI Z, et al. Hybrid MAP and PIC detection for OTFS modulation [J]. IEEE transactions on vehicular technology, 2021, 70(7): 7193–7198. DOI: 10.1109/TVT.2021.3083181
DOI |
26 |
WEI Z, YUAN W, LI S, et al. Transmitter and receiver window designs for orthogonal time-frequency space modulation [J]. IEEE transactions on communications, 2021, 69(4): 2207–2223. DOI: 10.1109/TCOMM.2021.3051386
DOI |
27 |
LI S, YUAN J, YUAN W, et al. Performance analysis of coded OTFS systems over high-mobility channels [J]. IEEE transactions on wireless communications, 2021, 20(9): 6033–6048. DOI: 10.1109/TWC.2021.3071493
DOI |
28 | WANG F G, MA G Y. Massive machine type communications: multiple access schemes [M]. Heidelberg, Germany: Springer, 2019 |
[1] | ZHANG Weiting, LIANG Haotian, XU Yuhua, ZHANG Chuan. Reliable and Privacy-Preserving Federated Learning with Anomalous Users [J]. ZTE Communications, 2023, 21(1): 15-24. |
[2] | ZHANG Qixun, HAN Jing, CHENG Li, ZHANG Baisheng, GONG Zican. Approach to Anomaly Detection in Microservice System with Multi- Source Data Streams [J]. ZTE Communications, 2022, 20(3): 85-92. |
[3] | NAIKOTI Ashwitha, CHOCKALINGAM Ananthanarayanan. Signal Detection and Channel Estimation in OTFS [J]. ZTE Communications, 2021, 19(4): 16-33. |
[4] | ZHANG Zhengquan, LIU Heng, WANG Qianli, FAN Pingzhi. A Survey on Low Complexity Detectors for OTFS Systems [J]. ZTE Communications, 2021, 19(4): 3-15. |
[5] | YUAN Zhengdao, LIU Fei, GUO Qinghua, WANG Zhongyong. Message Passing Based Detection for Orthogonal Time Frequency Space Modulation [J]. ZTE Communications, 2021, 19(4): 34-44. |
[6] | ZHANG Chong, XING Wang, YUAN Jinhong, ZHOU Yiqing. Performance of LDPC Coded OTFS Systems over High Mobility Channels [J]. ZTE Communications, 2021, 19(4): 45-53. |
[7] | LIU Mengmeng, LI Shuangyang, ZHANG Chunqiong, WANG Boyu, BAI Baoming. Coded Orthogonal Time Frequency Space Modulation [J]. ZTE Communications, 2021, 19(4): 54-62. |
[8] | WANG Dong, WANG Fanggang, LI Xiran, YUAN Pu, JIANG Dajie. Orthogonal Time Frequency Space Modulation in Multiple-Antenna Systems [J]. ZTE Communications, 2021, 19(4): 71-78. |
[9] | HAN Jing, JIA Tong, WU Yifan, HOU Chuanjia, LI Ying. Feedback‑Aware Anomaly Detection Through Logs for Large‑Scale Software Systems [J]. ZTE Communications, 2021, 19(3): 88-94. |
[10] | LIU Jianwei, YUAN Yifei, HAN Jing. A Case Study on Intelligent Operation System for Wireless Networks [J]. ZTE Communications, 2019, 17(4): 19-26. |
[11] | Anass Benjebbour. An Overview of Non-Orthogonal Multiple Access [J]. ZTE Communications, 2017, 15(S1): 21-30. |
[12] | YAN Chunlin, YUAN Zhifeng, LI Weimin, YUAN Yifei. Non-Orthogonal Multiple Access Schemes for 5G [J]. ZTE Communications, 2016, 14(4): 11-16. |
[13] | WEI Zhiqiang, YUAN Jinhong, Derrick Wing Kwan Ng, Maged Elkashlan, DING Zhiguo. A Survey of Downlink Non-Orthogonal Multiple Access for 5G Wireless Communication Networks [J]. ZTE Communications, 2016, 14(4): 17-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||