ZTE Communications ›› 2021, Vol. 19 ›› Issue (4): 1633.DOI: 10.12142/ZTECOM.202104003
• Special Topic • Previous Articles Next Articles
NAIKOTI Ashwitha(), CHOCKALINGAM Ananthanarayanan
Received:
20211018
Online:
20211225
Published:
20220104
About author:
Ashwitha NAIKOTI (NAIKOTI Ashwitha, CHOCKALINGAM Ananthanarayanan. Signal Detection and Channel Estimation in OTFS[J]. ZTE Communications, 2021, 19(4): 1633.
Path  1  2  3  4  5  6  7  8 

0  4.16  8.32  12.48  16.64  20.8  24.96  29.12  
0  0  938.5  938.5  938.5  1 875  1 875  1 875 
Table 1 DelayDoppler profile considered in Figure 10
Path  1  2  3  4  5  6  7  8 

0  4.16  8.32  12.48  16.64  20.8  24.96  29.12  
0  0  938.5  938.5  938.5  1 875  1 875  1 875 
Parameters  SymbolDNN 

Number of input neurons  
Number of output neurons   
Number of hidden layers  1 
Number of neurons in hidden layers  256 
Hidden layer activation  ReLU 
Output layer activation  Softmax 
Optimization  Adam 
Loss function  Binary cross entropy 
Training SNR  10 dB 
Number of training examples  50 000 
Number of epochs  50 
Table 2 Parameters of symbolDNN detector in Figure 10
Parameters  SymbolDNN 

Number of input neurons  
Number of output neurons   
Number of hidden layers  1 
Number of neurons in hidden layers  256 
Hidden layer activation  ReLU 
Output layer activation  Softmax 
Optimization  Adam 
Loss function  Binary cross entropy 
Training SNR  10 dB 
Number of training examples  50 000 
Number of epochs  50 
Path  1  2  3  4  5 

Delay  
Doppler  0 
Table 3 DelayDoppler profile for Figures 17 and 18
Path  1  2  3  4  5 

Delay  
Doppler  0 
1 
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation [C]//IEEE Wireless Communications and Networking Conference (WCNC). San Francisco, USA: IEEE, 2017: 1–6. DOI: 10.1109/WCNC.2017.7925924
DOI 
2  HADANI R, MONK A. OTFS: a new generation of modulation addressing the challenges of5G [EB/OL]. (20180207)[20210925]. 
3  HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation [EB/OL]. (20180801)[20210925]. 
4 
HADANI R, RAKIB S, MOLISCH A F, et al. Orthogonal time frequency space (OTFS) modulation for millimeterwave communications systems [C]//2017 IEEE MTTS International Microwave Symposium (IMS). Honololu, USA: IEEE, 2017: 681–683. DOI: 10.1109/MWSYM.2017.8058662
DOI 
5 
WIFFEN F, SAYER L, BOCUS M Z, et al. Comparison of OTFS and OFDM in ray launched sub6 GHz and mmWave lineofsight mobility channels [C]//IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Bologna, Italy: IEEE, 2018: 73–79. DOI: 10.1109/PIMRC.2018.8580850
DOI 
6 
RAMACHANDRAN M K, SURABHI G D, CHOCKALINGAM A. OTFS: a new modulation scheme for highmobility use cases [J]. Journal of the Indian institute of science, 2020, 100(2): 315–336. DOI: 10.1007/s41745020001674
DOI 
7 
MOHAMMED S K. Derivation of OTFS modulation from first principles [J]. IEEE transactions on vehicular technology, 2021, 70(8): 7619–7636. DOI: 10.1109/TVT.2021.3069913
DOI 
8 
MURALI K R, CHOCKALINGAM A. On OTFS modulation for highDoppler fading channels [C]//Information Theory and Applications Workshop (ITA). San Diego, USA: IEEE, 2018: 1–10. DOI: 10.1109/ITA.2018.8503182
DOI 
9 
SURABHI G D, AUGUSTINE R M, CHOCKALINGAM A. On the diversity of uncoded OTFS modulation in doublydispersive channels [J]. IEEE transactions on wireless communications, 2019, 18(6): 3049–3063. DOI: 10.1109/TWC.2019.2909205
DOI 
10 
GUNTURU A, GODALA A R, SAHOO A K, et al. Performance analysis of OTFS waveform for 5G NR mmWave communication system [C]//IEEE Wireless Communications and Networking Conference (WCNC). Nanjing, China: IEEE, 2021: 1–6. DOI: 10.1109/WCNC49053.2021.9417346
DOI 
11 
RAVITEJA P, PHAN K T, HONG Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation [J]. IEEE transactions on wireless communications, 2018, 17(10): 6501–6515. DOI: 10.1109/TWC.2018.2860011
DOI 
12 
THAJ T, VITERBO E. Low complexity iterative rake detector for orthogonal time frequency space modulation [C]//IEEE Wireless Communications and Networking Conference (WCNC). Seoul, Korea (South): IEEE, 2020: 1–6. DOI: 10.1109/WCNC45663.2020.9120526
DOI 
13 
KOLLENGODE RAMACHANDRAN M, CHOCKALINGAM A. MIMOOTFS in highDoppler fading channels: signal detection and channel estimation [C]//IEEE Global Communications Conference (GLOBECOM). Abu Dhabi, United Arab Emirates: IEEE, 2018: 206–212. DOI: 10.1109/GLOCOM.2018.8647394
DOI 
14 
LI L J, LIANG Y, FAN P Z, et al. Low complexity detection algorithms for OTFS under rapidly timevarying channel [C]//IEEE 89th Vehicular Technology Conference (VTC2019Spring). Kuala Lumpur, Malaysia: IEEE, 2019: 1–5. DOI: 10.1109/VTCSpring.2019.8746420
DOI 
15 
ZHANG H J, ZHANG T T. A lowcomplexity message passing detector for OTFS modulation with probability clipping [J]. IEEE wireless communications letters, 2021, 10(6): 1271–1275. DOI: 10.1109/LWC.2021.3063904
DOI 
16 
LI S Y, YUAN W J, WEI Z Q, et al. Hybrid MAP and PIC detection for OTFS modulation [J]. IEEE transactions on vehicular technology, 2021, 70(7): 7193–7198. DOI: 10.1109/tvt.2021.3083181
DOI 
17 
XIANG L P, LIU Y S, YANG L L, et al. Gaussian approximate message passing detection of orthogonal time frequency space modulation [J]. IEEE transactions on vehicular technology, 2021, 70(10): 10999–11004. DOI: 10.1109/TVT.2021.3102673
DOI 
18 
NAIKOTI A, CHOCKALINGAM A. Lowcomplexity delayDoppler symbol DNN for OTFS signal detection [C]//IEEE 93rd Vehicular Technology Conference (VTC2021Spring). Helsinki, Finland: IEEE, 2021: 1–6. DOI: 10.1109/VTC2021Spring51267.2021.9448630
DOI 
19 
ENKU Y K, BAI B M, WAN F, et al. Twodimensional convolutional neural networkbased signal detection for OTFS systems [J]. IEEE wireless communications letters, 2021, 10(11): 2514–2518. DOI: 10.1109/LWC.2021.3106039
DOI 
20 
YUAN W J, WEI Z Q, YUAN J H, et al. A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation [J]. IEEE transactions on vehicular technology, 2020, 69(7): 7976–7980. DOI: 10.1109/TVT.2020.2991443
DOI 
21 
SURABHI G D, CHOCKALINGAM A. Lowcomplexity linear equalization for OTFS modulation [J]. IEEE communications letters, 2020, 24(2): 330–334. DOI: 10.1109/LCOMM.2019.2956709
DOI 
22 
SURABHI G D, CHOCKALINGAM A. Lowcomplexity linear equalization for 2×2 MIMOOTFS signals [C]//IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Atlanta, USA: IEEE, 2020: 1–5. DOI: 10.1109/SPAWC48557.2020.9154292
DOI 
23 
TIWARI S, DAS S S, RANGAMGARI V. Low complexity LMMSE Receiver for OTFS [J]. IEEE communications letters, 2019, 23(12): 2205–2209. DOI: 10.1109/LCOMM.2019.2945564
DOI 
24 
LONG F, NIU K, DONG C, et al. Low complexity iterative LMMSEPIC equalizer for OTFS [C]//IEEE International Conference on Communications (ICC). Shanghai, China: IEEE, 2019: 1–6. DOI: 10.1109/ICC.2019.8761635
DOI 
25 
JING L Y, WANG H, HE C B, et al. Two dimensional adaptive multichannel decision feedback equalization for OTFS system [J]. IEEE communications letters, 2021, 25(3): 840–844. DOI: 10.1109/LCOMM.2020.3039982
DOI 
26 
PANDEY B C, MOHAMMED S K, RAVITEJA P, et al. Low complexity precoding and detection in multiuser massive MIMO OTFS downlink [J]. IEEE transactions on vehicular technology, 2021, 70(5): 4389–4405. DOI:10.1109/TVT.2021.3061694
DOI 
27 
RAVITEJA P, PHAN K T, HONG Y. Embedded pilotaided channel estimation for OTFS in delay–Doppler channels [J]. IEEE transactions on vehicular technology, 2019, 68(5): 4906–4917. DOI: 10.1109/TVT.2019.2906357
DOI 
28 
RASHEED O K, SURABHI G D, CHOCKALINGAM A. Sparse delayDoppler channel estimation in rapidly timevarying channels for multiuser OTFS on the uplink [C]//IEEE 91st Vehicular Technology Conference (VTC2020Spring). Antwerp, Belgium: IEEE, 2020: 1–5. DOI: 10.1109/VTC2020Spring48590.2020.9128497
DOI 
29 
ZHAO L, GAO W J, GUO W B. Sparse Bayesian learning of delayDoppler channel for OTFS system [J]. IEEE communications letters, 2020, 24(12): 2766–2769. DOI: 10.1109/LCOMM.2020.3021120
DOI 
30 
SRIVASTAVA S, SINGH R K, JAGANNATHAM A K, et al. Bayesian learning aided sparse channel estimation for orthogonal time frequency space modulated systems [J]. IEEE transactions on vehicular technology, 70(8): 8343–8348. DOI: 10.1109/TCOMM.2021.3123354
DOI 
31 
SHEN W Q, DAI L L, HAN S F, et al. Channel estimation for orthogonal time frequency space (OTFS) massive MIMO [C]//IEEE International Conference on Communications (ICC). Shanghai, China: IEEE, 2019: 1–6. DOI: 10.1109/ICC.2019.8761362
DOI 
32 
ZHAO H, KANG Z Q, WANG H. A novel channel estimation scheme for OTFS [C]//IEEE 20th International Conference on Communication Technology (ICCT). Nanning, China: IEEE, 2020: 12–16. DOI: 10.1109/ICCT50939.2020.9295699
DOI 
33 
BOMFIN R, CHAFII M, NIMR A, et al. Channel estimation for MIMO space time coded OTFS under doubly selective channels [C]//IEEE International Conference on Communications Workshops (ICC Workshops). Montreal, Canada: IEEE, 2021: 1–6. DOI: 10.1109/ICCWorkshops50388.2021.9473618
DOI 
34 
LIU F, YUAN Z D, GUO Q H, et al. Message passing based structured sparse signal recovery for estimation of OTFS channels with fractional Doppler shifts [J]. IEEE transactions on wireless communications, 2021, early access. DOI: 10.1109/TWC.2021.3087501
DOI 
35 
MISHRA H B, SINGH P, PRASAD A K, et al. OTFS channel estimation and data detection designs with superimposed pilots [J]. IEEE transactions on wireless communications, 2021, early access. DOI: 10.1109/TWC.2021.3110659
DOI 
36 
YUAN W J, LI S Y, WEI Z Q, et al. Dataaided channel estimation for OTFS systems with a superimposed pilot and data transmission scheme [J]. IEEE wireless communications letters, 2021, 10(9): 1954–1958. DOI: 10.1109/LWC.2021.3088836
DOI 
37  YUAN Z D, LIU F, YUAN W J, et al. Iterative detection for orthogonal time frequency space modulation with unitary approximate message passing [EB/OL]. (20210216)[20210925]. 
38  LI L, WEI H, HUANG Y, et al. A simple twostage equalizer with simplified orthogonal time frequency space modulation over rapidly timevarying channels [EB/OL]. (20170908)[20210925]. 
39  ZEMEN T, HOFER M, LOESCHENBRAND D. Lowcomplexity equalization for orthogonal time and frequency signaling (OTFS) [EB/OL]. (20171026)[20210925]. 
40 
THAJ T, VITERBO E. Low complexity iterative rake decision feedback equalizer for zeropadded OTFS systems [J]. IEEE transactions on vehicular technology, 2020, 69(12): 15606–15622. DOI: 10.1109/TVT.2020.3044276
DOI 
41  LI S Y, YUAN W J, WEI Z Q, et al. Cross domain iterative detection for orthogonal time frequency space modulation [EB/OL]. (20210111)[20210925]. 
42  XU W J, ZOU T T, GAO H, et al. Lowcomplexity linear equalization for OTFS systems with rectangular waveforms [EB/OL]. (20191119)[20210925]. 
43 
LIU Y S, ZHANG S, GAO F F, et al. Uplinkaided high mobility downlink channel estimation over massive MIMOOTFS system [J]. IEEE journal on selected areas in communications, 2020, 38(9): 1994–2009. DOI: 10.1109/JSAC.2020.3000884
DOI 
44 
DAS S S, RANGAMGARI V, TIWARI S, et al. Time domain channel estimation and equalization of CPOTFS under multiple fractional Dopplers and residual synchronization errors [J]. IEEE Access, 2021, 9: 10561–10576. DOI: 10.1109/ACCESS.2020.3046487
DOI 
45 
YAN H, WANG M. A low complexity channel estimation scheme for orthogonal time frequency space (OTFS) system with synchronization errors [C]//IEEE 6th International Conference on Computer and Communication Systems (ICCCS). Chengdu, China: IEEE, 2021: 576–581. DOI: 10.1109/ICCCS52626.2021.9449209
DOI 
46 
WU X D, MA S D, YANG X. Tensorbased lowcomplexity channel estimation for mmWave massive MIMOOTFS systems [J]. Journal of communications and information networks, 2020, 5(3): 324–334. DOI: 10.23919/JCIN.2020.9200896
DOI 
47 
KUMAR SINGH V, FLANAGAN M F, CARDIFF B. Maximum likelihood channel path detection and MMSE channel estimation in OTFS systems [C]//IEEE 92nd Vehicular Technology Conference (VTC2020Fall). Victoria, Canada: IEEE, 2020: 1–5. DOI: 10.1109/VTC2020Fall49728.2020.9348590
DOI 
48 
SHI D, WANG W J, YOU L, et al. Deterministic pilot design and channel estimation for downlink massive MIMOOTFS systems in presence of the fractional Doppler [J]. IEEE transactions on wireless communications, 2021, early access. DOI: 10.1109/TWC.2021.3081164
DOI 
49 
ZHANG M C, WANG F G, YUAN X J, et al. 2D structured turbo compressed sensing for channel estimation in OTFS systems [C]//IEEE International Conference on Communication Systems (ICCS). Chengdu, China: IEEE, 2018: 45–49. DOI: 10.1109/ICCS.2018.8689234
DOI 
50 
HASHIMOTO N, OSAWA N, YAMAZAKI K, et al. Channel estimation and equalization for CPOFDMbased OTFS in fractional Doppler channels [C]//IEEE International Conference on Communications Workshops (ICC Workshops). Montreal, Canada: IEEE, 2021: 1–7. DOI: 10.1109/ICCWorkshops50388.2021.9473532
DOI 
51 
QU H Y, LIU G H, ZHANG L, et al. Lowdimensional subspace estimation of continuousDopplerspread channel in OTFS systems [J]. IEEE transactions on communications, 2021, 69(7): 4717–4731. DOI: 10.1109/TCOMM.2021.3072744
DOI 
52  ABDELGADER A M S, WU L N. The physical layer of the IEEE 802.11p WAVE communication standard: the specifications and challenges [C]//World Congress on Engineering and Computer Science 2014. San Francisco, USA: IAENG, 2014 
53 
KRUSEVAC S, RAPAJIC P, KENNEDY R A. Channel capacity estimation for MIMO systems with correlated noise [C]//IEEE Global Telecommunications Conference. St. Louis, USA: IEEE, 2005: 2812–2816. DOI: 10.1109/GLOCOM.2005.1578272
DOI 
[1]  XIE Xinyu, WU Yongpeng, YUAN Zhifeng, MA Yihua. Massive Unsourced Random Access Under Carrier Frequency Offset [J]. ZTE Communications, 2023, 21(3): 4553. 
[2]  GUAN Xinrong, WU Qingqing. IRS‑Enabled Spectrum Sharing: Interference Modeling, Channel Estimation and Robust Passive Beamforming [J]. ZTE Communications, 2022, 20(1): 2835. 
[3]  SHAO Zhichao, YAN Wenjing, YUAN Xiaojun. Markovian Cascaded Channel Estimation for RIS Aided Massive MIMO Using 1‑Bit ADCs and Oversampling [J]. ZTE Communications, 2022, 20(1): 4856. 
[4]  JIAN Mengnan, ZHANG Nan, CHEN Yijian. RIS: Spatial‑Wideband Effect Analysis and Off‑Grid Channel Estimation [J]. ZTE Communications, 2022, 20(1): 5762. 
[5]  LIU Mengmeng, LI Shuangyang, ZHANG Chunqiong, WANG Boyu, BAI Baoming. Coded Orthogonal Time Frequency Space Modulation [J]. ZTE Communications, 2021, 19(4): 5462. 
[6]  Julian AHRENS, Lia AHRENS, Hans D. SCHOTTEN. A Machine Learning Method for Prediction of Multipath Channels [J]. ZTE Communications, 2019, 17(4): 1218. 
[7]  LIU Shen, QIN Yuannian, LI Xiaofan, ZHAO Yubin, XU Chengzhong. DataDriven Joint Estimation for Blind Signal Based on GAPSO Algorithm [J]. ZTE Communications, 2019, 17(3): 6370. 
[8]  Sohail Taheri, Mir Ghoraishi, XIAO Pei, CAO Aijun, GAO Yonghong. Evaluation of Preamble Based Channel Estimation for MIMOFBMC Systems [J]. ZTE Communications, 2016, 14(4): 310. 
Viewed  
Full text 


Abstract 

