ZTE Communications ›› 2021, Vol. 19 ›› Issue (4): 16-33.DOI: 10.12142/ZTECOM.202104003
• Special Topic • Previous Articles Next Articles
NAIKOTI Ashwitha(), CHOCKALINGAM Ananthanarayanan
Received:
2021-10-18
Online:
2021-12-25
Published:
2022-01-04
About author:
Ashwitha NAIKOTI (NAIKOTI Ashwitha, CHOCKALINGAM Ananthanarayanan. Signal Detection and Channel Estimation in OTFS[J]. ZTE Communications, 2021, 19(4): 16-33.
Path | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
0 | 4.16 | 8.32 | 12.48 | 16.64 | 20.8 | 24.96 | 29.12 | |
0 | 0 | 938.5 | 938.5 | 938.5 | 1 875 | 1 875 | 1 875 |
Table 1 Delay-Doppler profile considered in Figure 10
Path | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
0 | 4.16 | 8.32 | 12.48 | 16.64 | 20.8 | 24.96 | 29.12 | |
0 | 0 | 938.5 | 938.5 | 938.5 | 1 875 | 1 875 | 1 875 |
Parameters | Symbol-DNN |
---|---|
Number of input neurons | |
Number of output neurons | | |
Number of hidden layers | 1 |
Number of neurons in hidden layers | 256 |
Hidden layer activation | ReLU |
Output layer activation | Softmax |
Optimization | Adam |
Loss function | Binary cross entropy |
Training SNR | 10 dB |
Number of training examples | 50 000 |
Number of epochs | 50 |
Table 2 Parameters of symbol-DNN detector in Figure 10
Parameters | Symbol-DNN |
---|---|
Number of input neurons | |
Number of output neurons | | |
Number of hidden layers | 1 |
Number of neurons in hidden layers | 256 |
Hidden layer activation | ReLU |
Output layer activation | Softmax |
Optimization | Adam |
Loss function | Binary cross entropy |
Training SNR | 10 dB |
Number of training examples | 50 000 |
Number of epochs | 50 |
Path | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Delay | |||||
Doppler | 0 |
Table 3 Delay-Doppler profile for Figures 17 and 18
Path | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Delay | |||||
Doppler | 0 |
1 |
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation [C]//IEEE Wireless Communications and Networking Conference (WCNC). San Francisco, USA: IEEE, 2017: 1–6. DOI: 10.1109/WCNC.2017.7925924
DOI |
2 | HADANI R, MONK A. OTFS: a new generation of modulation addressing the challenges of5G [EB/OL]. (2018-02-07)[2021-09-25]. |
3 | HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation [EB/OL]. (2018-08-01)[2021-09-25]. |
4 |
HADANI R, RAKIB S, MOLISCH A F, et al. Orthogonal time frequency space (OTFS) modulation for millimeter-wave communications systems [C]//2017 IEEE MTT-S International Microwave Symposium (IMS). Honololu, USA: IEEE, 2017: 681–683. DOI: 10.1109/MWSYM.2017.8058662
DOI |
5 |
WIFFEN F, SAYER L, BOCUS M Z, et al. Comparison of OTFS and OFDM in ray launched sub-6 GHz and mmWave line-of-sight mobility channels [C]//IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Bologna, Italy: IEEE, 2018: 73–79. DOI: 10.1109/PIMRC.2018.8580850
DOI |
6 |
RAMACHANDRAN M K, SURABHI G D, CHOCKALINGAM A. OTFS: a new modulation scheme for high-mobility use cases [J]. Journal of the Indian institute of science, 2020, 100(2): 315–336. DOI: 10.1007/s41745-020-00167-4
DOI |
7 |
MOHAMMED S K. Derivation of OTFS modulation from first principles [J]. IEEE transactions on vehicular technology, 2021, 70(8): 7619–7636. DOI: 10.1109/TVT.2021.3069913
DOI |
8 |
MURALI K R, CHOCKALINGAM A. On OTFS modulation for high-Doppler fading channels [C]//Information Theory and Applications Workshop (ITA). San Diego, USA: IEEE, 2018: 1–10. DOI: 10.1109/ITA.2018.8503182
DOI |
9 |
SURABHI G D, AUGUSTINE R M, CHOCKALINGAM A. On the diversity of uncoded OTFS modulation in doubly-dispersive channels [J]. IEEE transactions on wireless communications, 2019, 18(6): 3049–3063. DOI: 10.1109/TWC.2019.2909205
DOI |
10 |
GUNTURU A, GODALA A R, SAHOO A K, et al. Performance analysis of OTFS waveform for 5G NR mmWave communication system [C]//IEEE Wireless Communications and Networking Conference (WCNC). Nanjing, China: IEEE, 2021: 1–6. DOI: 10.1109/WCNC49053.2021.9417346
DOI |
11 |
RAVITEJA P, PHAN K T, HONG Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation [J]. IEEE transactions on wireless communications, 2018, 17(10): 6501–6515. DOI: 10.1109/TWC.2018.2860011
DOI |
12 |
THAJ T, VITERBO E. Low complexity iterative rake detector for orthogonal time frequency space modulation [C]//IEEE Wireless Communications and Networking Conference (WCNC). Seoul, Korea (South): IEEE, 2020: 1–6. DOI: 10.1109/WCNC45663.2020.9120526
DOI |
13 |
KOLLENGODE RAMACHANDRAN M, CHOCKALINGAM A. MIMO-OTFS in high-Doppler fading channels: signal detection and channel estimation [C]//IEEE Global Communications Conference (GLOBECOM). Abu Dhabi, United Arab Emirates: IEEE, 2018: 206–212. DOI: 10.1109/GLOCOM.2018.8647394
DOI |
14 |
LI L J, LIANG Y, FAN P Z, et al. Low complexity detection algorithms for OTFS under rapidly time-varying channel [C]//IEEE 89th Vehicular Technology Conference (VTC2019-Spring). Kuala Lumpur, Malaysia: IEEE, 2019: 1–5. DOI: 10.1109/VTCSpring.2019.8746420
DOI |
15 |
ZHANG H J, ZHANG T T. A low-complexity message passing detector for OTFS modulation with probability clipping [J]. IEEE wireless communications letters, 2021, 10(6): 1271–1275. DOI: 10.1109/LWC.2021.3063904
DOI |
16 |
LI S Y, YUAN W J, WEI Z Q, et al. Hybrid MAP and PIC detection for OTFS modulation [J]. IEEE transactions on vehicular technology, 2021, 70(7): 7193–7198. DOI: 10.1109/tvt.2021.3083181
DOI |
17 |
XIANG L P, LIU Y S, YANG L L, et al. Gaussian approximate message passing detection of orthogonal time frequency space modulation [J]. IEEE transactions on vehicular technology, 2021, 70(10): 10999–11004. DOI: 10.1109/TVT.2021.3102673
DOI |
18 |
NAIKOTI A, CHOCKALINGAM A. Low-complexity delay-Doppler symbol DNN for OTFS signal detection [C]//IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). Helsinki, Finland: IEEE, 2021: 1–6. DOI: 10.1109/VTC2021-Spring51267.2021.9448630
DOI |
19 |
ENKU Y K, BAI B M, WAN F, et al. Two-dimensional convolutional neural network-based signal detection for OTFS systems [J]. IEEE wireless communications letters, 2021, 10(11): 2514–2518. DOI: 10.1109/LWC.2021.3106039
DOI |
20 |
YUAN W J, WEI Z Q, YUAN J H, et al. A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation [J]. IEEE transactions on vehicular technology, 2020, 69(7): 7976–7980. DOI: 10.1109/TVT.2020.2991443
DOI |
21 |
SURABHI G D, CHOCKALINGAM A. Low-complexity linear equalization for OTFS modulation [J]. IEEE communications letters, 2020, 24(2): 330–334. DOI: 10.1109/LCOMM.2019.2956709
DOI |
22 |
SURABHI G D, CHOCKALINGAM A. Low-complexity linear equalization for 2×2 MIMO-OTFS signals [C]//IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Atlanta, USA: IEEE, 2020: 1–5. DOI: 10.1109/SPAWC48557.2020.9154292
DOI |
23 |
TIWARI S, DAS S S, RANGAMGARI V. Low complexity LMMSE Receiver for OTFS [J]. IEEE communications letters, 2019, 23(12): 2205–2209. DOI: 10.1109/LCOMM.2019.2945564
DOI |
24 |
LONG F, NIU K, DONG C, et al. Low complexity iterative LMMSE-PIC equalizer for OTFS [C]//IEEE International Conference on Communications (ICC). Shanghai, China: IEEE, 2019: 1–6. DOI: 10.1109/ICC.2019.8761635
DOI |
25 |
JING L Y, WANG H, HE C B, et al. Two dimensional adaptive multichannel decision feedback equalization for OTFS system [J]. IEEE communications letters, 2021, 25(3): 840–844. DOI: 10.1109/LCOMM.2020.3039982
DOI |
26 |
PANDEY B C, MOHAMMED S K, RAVITEJA P, et al. Low complexity precoding and detection in multi-user massive MIMO OTFS downlink [J]. IEEE transactions on vehicular technology, 2021, 70(5): 4389–4405. DOI:10.1109/TVT.2021.3061694
DOI |
27 |
RAVITEJA P, PHAN K T, HONG Y. Embedded pilot-aided channel estimation for OTFS in delay–Doppler channels [J]. IEEE transactions on vehicular technology, 2019, 68(5): 4906–4917. DOI: 10.1109/TVT.2019.2906357
DOI |
28 |
RASHEED O K, SURABHI G D, CHOCKALINGAM A. Sparse delay-Doppler channel estimation in rapidly time-varying channels for multiuser OTFS on the uplink [C]//IEEE 91st Vehicular Technology Conference (VTC2020-Spring). Antwerp, Belgium: IEEE, 2020: 1–5. DOI: 10.1109/VTC2020-Spring48590.2020.9128497
DOI |
29 |
ZHAO L, GAO W J, GUO W B. Sparse Bayesian learning of delay-Doppler channel for OTFS system [J]. IEEE communications letters, 2020, 24(12): 2766–2769. DOI: 10.1109/LCOMM.2020.3021120
DOI |
30 |
SRIVASTAVA S, SINGH R K, JAGANNATHAM A K, et al. Bayesian learning aided sparse channel estimation for orthogonal time frequency space modulated systems [J]. IEEE transactions on vehicular technology, 70(8): 8343–8348. DOI: 10.1109/TCOMM.2021.3123354
DOI |
31 |
SHEN W Q, DAI L L, HAN S F, et al. Channel estimation for orthogonal time frequency space (OTFS) massive MIMO [C]//IEEE International Conference on Communications (ICC). Shanghai, China: IEEE, 2019: 1–6. DOI: 10.1109/ICC.2019.8761362
DOI |
32 |
ZHAO H, KANG Z Q, WANG H. A novel channel estimation scheme for OTFS [C]//IEEE 20th International Conference on Communication Technology (ICCT). Nanning, China: IEEE, 2020: 12–16. DOI: 10.1109/ICCT50939.2020.9295699
DOI |
33 |
BOMFIN R, CHAFII M, NIMR A, et al. Channel estimation for MIMO space time coded OTFS under doubly selective channels [C]//IEEE International Conference on Communications Workshops (ICC Workshops). Montreal, Canada: IEEE, 2021: 1–6. DOI: 10.1109/ICCWorkshops50388.2021.9473618
DOI |
34 |
LIU F, YUAN Z D, GUO Q H, et al. Message passing based structured sparse signal recovery for estimation of OTFS channels with fractional Doppler shifts [J]. IEEE transactions on wireless communications, 2021, early access. DOI: 10.1109/TWC.2021.3087501
DOI |
35 |
MISHRA H B, SINGH P, PRASAD A K, et al. OTFS channel estimation and data detection designs with superimposed pilots [J]. IEEE transactions on wireless communications, 2021, early access. DOI: 10.1109/TWC.2021.3110659
DOI |
36 |
YUAN W J, LI S Y, WEI Z Q, et al. Data-aided channel estimation for OTFS systems with a superimposed pilot and data transmission scheme [J]. IEEE wireless communications letters, 2021, 10(9): 1954–1958. DOI: 10.1109/LWC.2021.3088836
DOI |
37 | YUAN Z D, LIU F, YUAN W J, et al. Iterative detection for orthogonal time frequency space modulation with unitary approximate message passing [EB/OL]. (2021-02-16)[2021-09-25]. |
38 | LI L, WEI H, HUANG Y, et al. A simple two-stage equalizer with simplified orthogonal time frequency space modulation over rapidly time-varying channels [EB/OL]. (2017-09-08)[2021-09-25]. |
39 | ZEMEN T, HOFER M, LOESCHENBRAND D. Low-complexity equalization for orthogonal time and frequency signaling (OTFS) [EB/OL]. (2017-10-26)[2021-09-25]. |
40 |
THAJ T, VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems [J]. IEEE transactions on vehicular technology, 2020, 69(12): 15606–15622. DOI: 10.1109/TVT.2020.3044276
DOI |
41 | LI S Y, YUAN W J, WEI Z Q, et al. Cross domain iterative detection for orthogonal time frequency space modulation [EB/OL]. (2021-01-11)[2021-09-25]. |
42 | XU W J, ZOU T T, GAO H, et al. Low-complexity linear equalization for OTFS systems with rectangular waveforms [EB/OL]. (2019-11-19)[2021-09-25]. |
43 |
LIU Y S, ZHANG S, GAO F F, et al. Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system [J]. IEEE journal on selected areas in communications, 2020, 38(9): 1994–2009. DOI: 10.1109/JSAC.2020.3000884
DOI |
44 |
DAS S S, RANGAMGARI V, TIWARI S, et al. Time domain channel estimation and equalization of CP-OTFS under multiple fractional Dopplers and residual synchronization errors [J]. IEEE Access, 2021, 9: 10561–10576. DOI: 10.1109/ACCESS.2020.3046487
DOI |
45 |
YAN H, WANG M. A low complexity channel estimation scheme for orthogonal time frequency space (OTFS) system with synchronization errors [C]//IEEE 6th International Conference on Computer and Communication Systems (ICCCS). Chengdu, China: IEEE, 2021: 576–581. DOI: 10.1109/ICCCS52626.2021.9449209
DOI |
46 |
WU X D, MA S D, YANG X. Tensor-based low-complexity channel estimation for mmWave massive MIMO-OTFS systems [J]. Journal of communications and information networks, 2020, 5(3): 324–334. DOI: 10.23919/JCIN.2020.9200896
DOI |
47 |
KUMAR SINGH V, FLANAGAN M F, CARDIFF B. Maximum likelihood channel path detection and MMSE channel estimation in OTFS systems [C]//IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Victoria, Canada: IEEE, 2020: 1–5. DOI: 10.1109/VTC2020-Fall49728.2020.9348590
DOI |
48 |
SHI D, WANG W J, YOU L, et al. Deterministic pilot design and channel estimation for downlink massive MIMO-OTFS systems in presence of the fractional Doppler [J]. IEEE transactions on wireless communications, 2021, early access. DOI: 10.1109/TWC.2021.3081164
DOI |
49 |
ZHANG M C, WANG F G, YUAN X J, et al. 2D structured turbo compressed sensing for channel estimation in OTFS systems [C]//IEEE International Conference on Communication Systems (ICCS). Chengdu, China: IEEE, 2018: 45–49. DOI: 10.1109/ICCS.2018.8689234
DOI |
50 |
HASHIMOTO N, OSAWA N, YAMAZAKI K, et al. Channel estimation and equalization for CP-OFDM-based OTFS in fractional Doppler channels [C]//IEEE International Conference on Communications Workshops (ICC Workshops). Montreal, Canada: IEEE, 2021: 1–7. DOI: 10.1109/ICCWorkshops50388.2021.9473532
DOI |
51 |
QU H Y, LIU G H, ZHANG L, et al. Low-dimensional subspace estimation of continuous-Doppler-spread channel in OTFS systems [J]. IEEE transactions on communications, 2021, 69(7): 4717–4731. DOI: 10.1109/TCOMM.2021.3072744
DOI |
52 | ABDELGADER A M S, WU L N. The physical layer of the IEEE 802.11p WAVE communication standard: the specifications and challenges [C]//World Congress on Engineering and Computer Science 2014. San Francisco, USA: IAENG, 2014 |
53 |
KRUSEVAC S, RAPAJIC P, KENNEDY R A. Channel capacity estimation for MIMO systems with correlated noise [C]//IEEE Global Telecommunications Conference. St. Louis, USA: IEEE, 2005: 2812–2816. DOI: 10.1109/GLOCOM.2005.1578272
DOI |
[1] | XIE Xinyu, WU Yongpeng, YUAN Zhifeng, MA Yihua. Massive Unsourced Random Access Under Carrier Frequency Offset [J]. ZTE Communications, 2023, 21(3): 45-53. |
[2] | GUAN Xinrong, WU Qingqing. IRS‑Enabled Spectrum Sharing: Interference Modeling, Channel Estimation and Robust Passive Beamforming [J]. ZTE Communications, 2022, 20(1): 28-35. |
[3] | SHAO Zhichao, YAN Wenjing, YUAN Xiaojun. Markovian Cascaded Channel Estimation for RIS Aided Massive MIMO Using 1‑Bit ADCs and Oversampling [J]. ZTE Communications, 2022, 20(1): 48-56. |
[4] | JIAN Mengnan, ZHANG Nan, CHEN Yijian. RIS: Spatial‑Wideband Effect Analysis and Off‑Grid Channel Estimation [J]. ZTE Communications, 2022, 20(1): 57-62. |
[5] | LIU Mengmeng, LI Shuangyang, ZHANG Chunqiong, WANG Boyu, BAI Baoming. Coded Orthogonal Time Frequency Space Modulation [J]. ZTE Communications, 2021, 19(4): 54-62. |
[6] | Julian AHRENS, Lia AHRENS, Hans D. SCHOTTEN. A Machine Learning Method for Prediction of Multipath Channels [J]. ZTE Communications, 2019, 17(4): 12-18. |
[7] | LIU Shen, QIN Yuannian, LI Xiaofan, ZHAO Yubin, XU Chengzhong. Data-Driven Joint Estimation for Blind Signal Based on GA-PSO Algorithm [J]. ZTE Communications, 2019, 17(3): 63-70. |
[8] | Sohail Taheri, Mir Ghoraishi, XIAO Pei, CAO Aijun, GAO Yonghong. Evaluation of Preamble Based Channel Estimation for MIMO-FBMC Systems [J]. ZTE Communications, 2016, 14(4): 3-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||