ZTE Communications ›› 2021, Vol. 19 ›› Issue (4): 34-44.DOI: 10.12142/ZTECOM.202104004
• Special Topic • Previous Articles Next Articles
YUAN Zhengdao1, LIU Fei2, GUO Qinghua3(), WANG Zhongyong2
Received:
2021-10-10
Online:
2021-12-25
Published:
2022-01-04
About author:
YUAN Zhengdao received the B.E. degree in communication and information system from Henan University of Science and Technology, China in 2006, the M.E. degree in communication engineering from Soochow University, China in 2009, and the Ph.D. degree in information and communication engineering from the National Digital Switching System Engineering and Technological Research Center, China in 2018. He is currently an associate professor with the Open University of Henan. He was a visiting scholar with the University of Wollongong, Australia in 2019. His research interests are mainly in massive MIMO, sparse channel estimation, message passing algorithm, and iterative receiver.|LIU Fei received the B.E. and M.E. degrees in information and communication engineering from Zhengzhou University, China in 2015 and 2017, respectively. He is currently working toward the Ph.D. degree with the School of Information and Engineering, Zhengzhou University, China. His research interests are message passing algorithm, sparse signal recovery, and OTFS.|GUO Qinghua (Supported by:
YUAN Zhengdao, LIU Fei, GUO Qinghua, WANG Zhongyong. Message Passing Based Detection for Orthogonal Time Frequency Space Modulation[J]. ZTE Communications, 2021, 19(4): 34-44.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202104004
Factor | Distribution | Function Form |
---|---|---|
Table 1 Factors, underlying distributions and functional forms associated with Eq. (31)
Factor | Distribution | Function Form |
---|---|---|
Detectors | Complexity |
---|---|
MP detector | |
VB detector | |
UAMP detector |
Table 2 Computational complexity of various detectors per iteration
Detectors | Complexity |
---|---|
MP detector | |
VB detector | |
UAMP detector |
1 |
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation [C]//2017 IEEE Wireless Communications and Networking Conference (WCNC). San Francisco, USA: IEEE, 2017: 1–6. DOI: 10.1109/WCNC.2017.7925924
DOI |
2 |
RAVITEJA P, PHAN K T, HONG Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation [J]. IEEE transactions on wireless communications, 2018, 17(10): 6501–6515. DOI: 10.1109/TWC.2018.2860011
DOI |
3 |
SURABHI G D, AUGUSTINE R M, CHOCKALINGAM A. On the diversity of uncoded OTFS modulation in doubly-dispersive channels [J]. IEEE transactions on wireless communications, 2019, 18(6): 3049–3063. DOI:10.1109/TWC.2019.2909205
DOI |
4 | HADANI R, MONK A. OTFS: A new generation of modulation addressing the challenges of5G [EB/OL]. [2021-10-01]. |
5 |
LI S Y, YUAN J H, YUAN W J, et al. Performance analysis of coded OTFS systems over high-mobility channels [J]. IEEE transactions on wireless communications, 2021, 20(9): 6033–6048. DOI: 10.1109/TWC.2021.3071493
DOI |
6 |
WEI Z Q, YUAN W J, LI S Y, et al. Orthogonal time-frequency space modulation: a promising next-generation waveform [J]. IEEE wireless communications, 2021, 28(4): 136–144. DOI: 10.1109/MWC.001.2000408
DOI |
7 |
FARHANG A, REZAZADEHREYHANI A, DOYLE L E, et al. Low complexity modem structure for OFDM-based orthogonal time frequency space modulation [J]. IEEE wireless communications letters, 2018, 7(3): 344–347. DOI: 10.1109/LWC.2017.2776942
DOI |
8 | LI L, WEI H, HUANG Y, et al. A simple two-stage equalizer with simplified orthogonal time frequency space modulation over rapidly time-varying channels[EB/OL]. [2021-10-10]. |
9 |
LONG F, NIU K, DONG C, et al. Low complexity iterative LMMSE-PIC equalizer for OTFS [C]//2019 IEEE International Conference on Communications (ICC). Shanghai, China: IEEE, 2019: 1–6. DOI: 10.1109/ICC.2019.8761635
DOI |
10 | ZEMEN T, HOFER M, LOESCHENBRAND D. Low-complexity equalization for orthogonal time and frequency signaling (OTFS) [EB/OL]. [2021-10-10]. |
11 |
SURABHI G D, CHOCKALINGAM A. Low-complexity linear equalization for OTFS modulation [J]. IEEE communications letters, 2020, 24(2): 330–334. DOI: 10.1109/LCOMM.2019.2956709
DOI |
12 |
SINGH P, MISHRA H B, BUDHIRAJA R. Low-complexity linear MIMO-OTFS receivers [C]//2021 IEEE International Conference on Communications Workshops (ICC Workshops). Montreal, Canada: IEEE, 2021: 1–6. DOI: 10.1109/ICCWorkshops50388.2021.9473839
DOI |
13 |
LI S Y, YUAN W J, WEI Z Q, et al. Cross domain iterative detection for orthogonal time frequency space modulation [J]. IEEE transactions on wireless communications, 2021, (99): 1. DOI: 10.1109/TWC.2021.3110125
DOI |
14 |
THAJ T, VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems [J]. IEEE transactions on vehicular technology, 2020, 69(12): 15606–15622. DOI: 10.1109/TVT.2020.3044276
DOI |
15 |
KSCHISCHANG F R, FREY B J, LOELIGER H A. Factor graphs and the sum-product algorithm [J]. IEEE transactions on information theory, 2001, 47(2): 498–519. DOI: 10.1109/18.910572
DOI |
16 |
LI H, DONG Y Y, GONG C H, et al. Low complexity receiver via expectation propagation for OTFS modulation [J]. IEEE communications letters, 2021, 25(10): 3180–3184. DOI: 10.1109/LCOMM.2021.3101827
DOI |
17 |
YUAN W J, WEI Z Q, YUAN J H, et al. A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation [J]. IEEE transactions on vehicular technology, 2020, 69(7): 7976–7980. DOI:10.1109/TVT.2020.2991443
DOI |
18 |
ZHANG H J, ZHANG T T. A low-complexity message passing detector for OTFS modulation with probability clipping [J]. IEEE wireless communications letters, 2021, 10(6): 1271–1275. DOI: 10.1109/LWC.2021.3063904
DOI |
19 |
TIWARI S, DAS S S, RANGAMGARI V. Low complexity LMMSE Receiver for OTFS [J]. IEEE communications letters, 2019, 23(12): 2205–2209. DOI: 10.1109/LCOMM.2019.2945564
DOI |
20 |
RAVITEJA P, VITERBO E, HONG Y. OTFS performance on static multipath channels [J]. IEEE wireless communications letters, 2019, 8(3): 745–748. DOI: 10.1109/LWC.2018.2890643
DOI |
21 |
DONOHO D L, MALEKI A, MONTANARI A. Message passing algorithms for compressed sensing: motivation and construction [C]//2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo). Cairo, Egypt: IEEE, 2010: 1–5. DOI: 10.1109/ITWKSPS.2010.5503193
DOI |
22 |
DONOHO D L, MALEKI A, MONTANARI A. Message passing algorithms for compressed sensing: analysis and validation [C]//2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo). Cairo, Egypt: IEEE, 2010: 1–5. DOI: 10.1109/ITWKSPS.2010.5503228
DOI |
23 | WINN J, BISHOP C M. Variational message passing [J]. Journal of machine learning research, 2005, 6(4): 661–694. |
24 | MONK A, HADANI R, TSATSANIS M, et al. OTFS - Orthogonal Time Frequency Space [EB-OL]. [2021-10-10]. . |
25 |
YUAN Z D, LIU F, YUAN W J, et al. Iterative detection for orthogonal time frequency space modulation with unitary approximate message passing [J]. IEEE transactions on wireless communications, 2021. DOI:10.1109/TWC.2021.3097173
DOI |
26 |
LIU F, YUAN Z D, GUO Q H, WANG Z Y, et al. Multi-block UAMP based detection for OTFS with rectangular waveform [J]. IEEE wireless communications letters, 2021. DOI: 10.1109/LWC.2021.3126871
DOI |
27 | GUO Q H, XI J T. Approximate message passing with unitary transformation [EB/OL]. [2021-10-10]. |
28 |
YUAN Z D, GUO Q H, LUO M. Approximate message passing with unitary transformation for robust bilinear recovery [J]. IEEE transactions on signal processing, 2021, 69: 617–630. DOI: 10.1109/TSP.2020.3044847
DOI |
29 |
LUO M, GUO Q H, JIN M, et al. Unitary approximate message passing for sparse Bayesian learning [J]. IEEE transactions on signal processing, 2021, 69: 6023–6039. DOI: 10.1109/TSP.2021.3114985
DOI |
30 |
TUCHLER M, SINGER A C, KOETTER R. Minimum mean squared error equalization using a priori information [J]. IEEE transactions on signal processing, 2002, 50(3): 673–683. DOI: 10.1109/78.984761
DOI |
31 |
GUO Q H, PING L. LMMSE turbo equalization based on factor graphs [J]. IEEE journal on selected areas in communications, 2008, 26(2): 311–319. DOI: 10.1109/JSAC.2008.080208
DOI |
32 |
GUO Q H, HUANG D D. A concise representation for the soft-in soft-out LMMSE detector [J]. IEEE communications letters, 2011, 15(5): 566–568. DOI: 10.1109/LCOMM.2011.032811.102073
DOI |
33 |
LIU F, YUAN Z D, GUO Q H, et al. Message passing based structured sparse signal recovery for estimation of OTFS channels with fractional Doppler shifts [J]. IEEE transactions on wireless communications, 2021. DOI: 10.1109/TWC.2021.3087501
DOI |
[1] | LU Jiachen, NIU Zhi, CHEN Li, DONG Luming, SHEN Taoli. Deadlock Detection: Background, Techniques, and Future Improvements [J]. ZTE Communications, 2024, 22(2): 71-79. |
[2] | WANG Chongchong, LI Yao, WANG Beibei, CAO Hong, ZHANG Yanyong. Point Cloud Processing Methods for 3D Point Cloud Detection Tasks [J]. ZTE Communications, 2023, 21(4): 38-46. |
[3] | YIN Yujie, CHEN Zhang. Perceptual Optimization for Point-Based Point Cloud Rendering [J]. ZTE Communications, 2023, 21(4): 47-53. |
[4] | GONG Panyin, ZHANG Guidong, ZHANG Zhigang, CHEN Xiao, DING Xuan. Research on Fall Detection System Based on Commercial Wi-Fi Devices [J]. ZTE Communications, 2023, 21(4): 60-68. |
[5] | XIE Xinyu, WU Yongpeng, YUAN Zhifeng, MA Yihua. Massive Unsourced Random Access Under Carrier Frequency Offset [J]. ZTE Communications, 2023, 21(3): 45-53. |
[6] | YU Junpeng, CHEN Yiyu. A Practical Reinforcement Learning Framework for Automatic Radar Detection [J]. ZTE Communications, 2023, 21(3): 22-28. |
[7] | FAN Guotian, WANG Zhibin. Intelligent Antenna Attitude Parameters Measurement Based on Deep Learning SSD Model [J]. ZTE Communications, 2022, 20(S1): 36-43. |
[8] | MEI Junjun, GUAN Tao, TONG Junwen. Label Enhancement for Scene Text Detection [J]. ZTE Communications, 2022, 20(4): 89-95. |
[9] | ZHANG Qixun, HAN Jing, CHENG Li, ZHANG Baisheng, GONG Zican. Approach to Anomaly Detection in Microservice System with Multi- Source Data Streams [J]. ZTE Communications, 2022, 20(3): 85-92. |
[10] | CUI Ziqi, WANG Gongpu, WANG Zhigang, AI Bo, XIAO Huahua. Symbiotic Radio Systems: Detection and Performance Analysis [J]. ZTE Communications, 2022, 20(3): 93-98. |
[11] | NAIKOTI Ashwitha, CHOCKALINGAM Ananthanarayanan. Signal Detection and Channel Estimation in OTFS [J]. ZTE Communications, 2021, 19(4): 16-33. |
[12] | ZHANG Zhengquan, LIU Heng, WANG Qianli, FAN Pingzhi. A Survey on Low Complexity Detectors for OTFS Systems [J]. ZTE Communications, 2021, 19(4): 3-15. |
[13] | ZHANG Chong, XING Wang, YUAN Jinhong, ZHOU Yiqing. Performance of LDPC Coded OTFS Systems over High Mobility Channels [J]. ZTE Communications, 2021, 19(4): 45-53. |
[14] | LIU Mengmeng, LI Shuangyang, ZHANG Chunqiong, WANG Boyu, BAI Baoming. Coded Orthogonal Time Frequency Space Modulation [J]. ZTE Communications, 2021, 19(4): 54-62. |
[15] | MA Yiyan, MA Guoyu, WANG Ning, ZHONG Zhangdui, AI Bo. OTFS Enabled NOMA for MMTC Systems over LEO Satellite [J]. ZTE Communications, 2021, 19(4): 63-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||