1 |
SEUFERT M, KARGL J, SCHAUER J, et al. Different points of view: impact of 3D point cloud reduction on QoE of rendered images [C]//The 12th International Conference on Quality of Multimedia Experience. IEEE, 2020: 1–6. DOI: 10.1109/QoMEX48832.2020.9123143
|
2 |
DUMIC E, BATTISTI F, CARLI M, et al. Point cloud visualization methods: a study on subjective preferences [C]//The 28th European Signal Processing Conference. IEEE, 2020: 595–599
|
3 |
ZHAO X, ZHANG B W, WU J J, et al. Relationship-based point cloud completion [J]. IEEE transactions on visualization and computer graphics, 2022, 28(12): 4940–4950. DOI: 10.1109/TVCG.2021.3109392
|
4 |
CHEN H H, WEI M Q, SUN Y X, et al. Multi-patch collaborative point cloud denoising via low-rank recovery with graph constraint [J]. IEEE transactions on visualization and computer graphics, 2020, 26(11): 3255–3270. DOI: 10.1109/TVCG.2019.2920817
|
5 |
LI H Q, LI L, LI Z. A review of point cloud compression [J]. ZTE technology journal, 2021, 27(1): 5–9. DOI: 10.12142/ZTETJ.202101003
|
6 |
LIU Q, SU H L, DUANMU Z F, et al. Perceptual quality assessment of colored 3D point clouds [J]. IEEE transactions on visualization and computer graphics, 2023, 29(8): 3642–3655. DOI: 10.1109/TVCG.2022.3167151
|
7 |
LIU Q, YUAN H, HOU J H, et al. Model-based joint bit allocation between geometry and color for video-based 3D point cloud compression [J]. IEEE transactions on multimedia, 2021, 23: 3278–3291. DOI: 10.1109/TMM.2020.3023294
|
8 |
VAN DER HOOFT J, VEGA M T, TIMMERER C, et al. Objective and subjective QoE evaluation for adaptive point cloud streaming [C]//The 12th International Conference on Quality of Multimedia Experience. IEEE, 2020: 1–6. DOI: 10.1109/QoMEX48832.2020.9123081
|
9 |
PHARR M, JAKOB W, HUMPHREYS G. Physically based rendering: from theory to implementation [M]. Massachusetts, USA: MIT Press, 2023
|
10 |
JAVAHERI A, BRITES C, PEREIRA F, et al. Point cloud rendering after coding: impacts on subjective and objective quality [J]. IEEE transactions on multimedia, 2021, 23: 4049–4064. DOI: 10.1109/TMM.2020.3037481
|
11 |
XU I L, YANG Q, YANG D, et al. Challenges and key technologies of point cloud quality evaluation [J]. Journal of Communication University of China: natural science edition, 2021, 28(5): 11
|
12 |
KAZHDAN M, BOLITHO M, HOPPE H. Poisson surface reconstruction [C]//The Fourth Eurographics Symposium on Geometry Processing. ACM, 2006
|
13 |
FENG Y P, ZHONG H X, PANG Y J. Non-mesh rendering based on points [C]//International Conference on Machine Learning and Cybernetics. IEEE, 2005: 5442–5446. DOI: 10.1109/ICMLC.2005.1527906
|
14 |
XUE A R. Research on spatial outlier excavation technology [D]. Zhenjiang: Jiangsu Univeristy, 2009
|
15 |
MANDHARE H C, IDATE S R. A comparative study of cluster based outlier detection, distance based outlier detection and density based outlier detection techniques [C]//International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2018: 931–935. DOI: 10.1109/ICCONS.2017.8250601
|
16 |
LIN R H, HU H, WEN Z K, et al. Research on denoising and segmentation algorithm application of pigs’ point cloud based on DBSCAN and PointNet [C]//IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). IEEE, 2021: 42–47. DOI: 10.1109/MetroAgriFor52389.2021.9628501
|
17 |
XU S Y, LIU H Y, DUAN L T, et al. An improved LOF outlier detection algorithm [C]//IEEE International Conference on Artificial Intelligence and Computer Applications. IEEE, 2021: 113–117. DOI: 10.1109/ICAICA52286.2021.9498181
|
18 |
MOSALLAM B E, AHMED S H. Exploring effective outlier detection in IoT: a systematic survey of techniques and applications [C]//Intelligent Methods, Systems, and Applications (IMSA). IEEE, 2023: 375–380. DOI: 10.1109/IMSA58542.2023.10255071
|
19 |
XUE A R, YAO L, JU, T, et al. A review of outlier mining methods [J]. Computer science, 2008, 35(11): 13–18
|
20 |
ZHAO P. Outlier detection and model reconstruction of 3D point cloud data [D]. Dalian: Dalian University of Technology, 2015
|
21 |
LIU R, WAN W G, ZHOU Y Y, et al. Normal estimation algorithm for point cloud using KD-Tree [C]//IET International Conference on Smart and Sustainable City. IET, 2013. DOI: 10.1049/cp.2013.1978
|