ZTE Communications ›› 2021, Vol. 19 ›› Issue (4): 45-53.DOI: 10.12142/ZTECOM.202104005
• Special Topic • Previous Articles Next Articles
ZHANG Chong1,2,3,4(), XING Wang1,2,3,4, YUAN Jinhong5, ZHOU Yiqing1,2,3,4
Received:
2021-10-29
Online:
2021-12-25
Published:
2022-01-04
About author:
ZHANG Chong (Supported by:
ZHANG Chong, XING Wang, YUAN Jinhong, ZHOU Yiqing. Performance of LDPC Coded OTFS Systems over High Mobility Channels[J]. ZTE Communications, 2021, 19(4): 45-53.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202104005
Information Bits | Code Rate | Modulation |
---|---|---|
2 100 | 1/2 | BPSK |
4 200 | 1/2 | QPSK |
8 400 | 1/2 | 16QAM |
Table 1 Parameters of LDPC codes
Information Bits | Code Rate | Modulation |
---|---|---|
2 100 | 1/2 | BPSK |
4 200 | 1/2 | QPSK |
8 400 | 1/2 | 16QAM |
1 |
ZHOU Y Q, LIU L, WANG L, et al. Service-aware 6G: an intelligent and open network based on the convergence of communication, computing and caching [J]. Digital communications and networks, 2020, 6(3): 253–260. DOI: 10.1016/j.dcan.2020.05.003
DOI |
2 |
ZHOU Y Q, TIAN L, LIU L, et al. Fog computing enabled future mobile communication networks: a convergence of communication and computing [J]. IEEE communications magazine, 2019, 57(5): 20–27. DOI: 10.1109/MCOM.2019.1800235
DOI |
3 |
LIU L, ZHOU Y Q, YUAN J H, et al. Economically optimal MS association for multimedia content delivery in cache-enabled heterogeneous cloud radio access networks [J]. IEEE journal on selected areas in communications, 2019, 37(7): 1584–1593. DOI: 10.1109/JSAC.2019.2916280
DOI |
4 |
LIU L, ZHOU Y Q, ZHUANG W H, et al. Tractable coverage analysis for hexagonal macrocell-based heterogeneous UDNs with adaptive interference-aware CoMP [J]. IEEE transactions on wireless communications, 2019, 18(1): 503–517. DOI: 10.1109/TWC.2018.2882434
DOI |
5 |
LIU L, ZHOU Y Q, GARCIA V, et al. Load aware joint CoMP clustering and inter-cell resource scheduling in heterogeneous ultra-dense cellular networks [J]. IEEE transactions on vehicular technology, 2018, 67(3): 2741–2755. DOI:10.1109/TVT.2017.2773640
DOI |
6 |
GARCIA V, ZHOU Y Q, SHI J L. Coordinated multipoint transmission in dense cellular networks with user-centric adaptive clustering [J]. IEEE transactions on wireless communications, 2014, 13(8): 4297–4308. DOI: 10.1109/TWC.2014.2316500
DOI |
7 |
JAMEEL F, WYNE S, NAWAZ S J, et al. Propagation channels for mmWave vehicular communications: state-of-the-art and future research directions [J]. IEEE wireless communications, 2019, 26(1): 144–150. DOI: 10.1109/MWC.2018.1800174
DOI |
8 |
SU Y T, LIU Y Q, ZHOU Y Q, et al. Broadband LEO satellite communications: architectures and key technologies [J]. IEEE wireless communications, 2019, 26(2): 55–61. DOI: 10.1109/MWC.2019.1800299
DOI |
9 |
NOH G, HUI B, KIM I. High speed train communications in 5G: Design elements to mitigate the impact of very high mobility [J]. IEEE wireless communications, 2020, 27(6): 98–106. DOI: 10.1109/MWC.001.2000034
DOI |
10 |
BAI L, HAN R, LIU J W, et al. Air-to-ground wireless links for high-speed UAVs [J]. IEEE journal on selected areas in communications, 2020, 38(12): 2918–2930. DOI: 10.1109/JSAC.2020.3005471
DOI |
11 |
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]//2017 IEEE Wireless Communications and Networking Conference (WCNC). San Francisco, USA: IEEE, 2017: 1–6. DOI: 10.1109/WCNC.2017.7925924
DOI |
12 |
WEI Z Q, YUAN W J, LI S Y, et al. Orthogonal time-frequency space modulation: a promising next-generation waveform [J]. IEEE wireless communications, 2021, 28(4): 136–144. DOI: 10.1109/MWC.001.2000408
DOI |
13 | HEBRON Y, RAKIB S, HADANI R, et al. Channel acquisition using orthogonal time frequency space modulated pilot signals: PCT/US20 17/025 166 [P]. 2016 |
14 |
RAVITEJA P, PHAN K T, HONG Y. Embedded pilot-aided channel estimation for OTFS in delay–Doppler channels [J]. IEEE transactions on vehicular technology, 2019, 68(5): 4906–4917. DOI: 10.1109/TVT.2019.2906357
DOI |
15 |
MURALI K R, CHOCKALINGAM A. On OTFS modulation for high-Doppler fading channels [J]. 2018 information theory and applications workshop (ITA), 2018: 1–10. DOI: 10.1109/ITA.2018.8503182
DOI |
16 |
LIU B, WEI Z Q, YUAN W J, et al. Channel estimation and user identification with deep learning for massive machine-type communications [J]. IEEE transactions on vehicular technology, 2021, 70(10): 10709–10722. DOI: 10.1109/TVT.2021.3111081
DOI |
17 |
RAVITEJA P, PHAN K T, HONG Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation [J]. IEEE transactions on wireless communications, 2018, 17(10): 6501–6515. DOI: 10.1109/TWC.2018.2860011
DOI |
18 |
LI L J, LIANG Y, FAN P Z, et al. Low complexity detection algorithms for OTFS under rapidly time-varying channel [C]//2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). Kuala Lumpur, Malaysia: IEEE, 2019: 1–5. DOI: 10.1109/VTCSpring.2019.8746420
DOI |
19 |
YUAN W J, WEI Z Q, YUAN J H, et al. A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation [J]. IEEE transactions on vehicular technology, 2020, 69(7): 7976–7980. DOI: 10.1109/TVT.2020.2991443
DOI |
20 |
YUAN Z D, LIU F, YUAN W J, et al. Iterative detection for orthogonal time frequency space modulation with unitary approximate message passing [J]. IEEE transactions on wireless communications, 7173, (99): 1. DOI: 10.1109/TWC.2021.3097173
DOI |
21 |
LI S Y, YUAN W J, WEI Z Q, et al. Cross domain iterative detection for orthogonal time frequency space modulation [J]. IEEE transactions on wireless communications, 0125, (99): 1. DOI: 10.1109/TWC.2021.3110125
DOI |
22 |
LI S Y, YUAN J H, YUAN W J, et al. Performance analysis of coded OTFS systems over high-mobility channels [J]. IEEE transactions on wireless communications, 2021, 20(9): 6033–6048. DOI: 10.1109/TWC.2021.3071493
DOI |
23 |
RAVITEJA P, HONG Y, VITERBO E, et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS [J]. IEEE transactions on vehicular technology, 2019, 68(1): 957–961. DOI: 10.1109/TVT.2018.2878891
DOI |
24 |
TSE D, VISWANATH P. Fundamentals of wireless communication [M]. Cambridge: Cambridge University Press, 2005. DOI: 10.1017/cbo9780511807213
DOI |
25 | MOLISCH A F. Wireless communications [M]. Hoboken, USA: John Wiley & Sons, 2012 |
26 |
RAVITEJA P, HONG Y, VITERBO E, et al. Effective diversity of OTFS modulation [J]. IEEE wireless communications letters, 2020, 9(2): 249–253. DOI: 10.1109/LWC.2019.2951758
DOI |
27 |
TAROKH V, SESHADRI N, CALDERBANK A R. Space-time codes for high data rate wireless communication: Performance criterion and code construction [J]. IEEE transactions on information theory, 1998, 44(2): 744–765. DOI: 10.1109/18.661517
DOI |
28 |
VUCETIC B, YUAN J H. Space-time coding [M]. Chichester, UK: John Wiley & Sons, Ltd, 2003. DOI:10.1002/047001413x
DOI |
29 |
BIGLIERI E, RAVITEJA P, HONG Y. Error performance of orthogonal time frequency space (OTFS) modulation [C]//IEEE International Conference on Communications Workshops. Shanghai, China: IEEE, 2019: 1–6. DOI: 10.1109/ICCW.2019.8756831
DOI |
30 |
SURABHI G D, AUGUSTINE R M, CHOCKALINGAM A. On the diversity of uncoded OTFS modulation in doubly-dispersive channels [J]. IEEE transactions on wireless communications, 2019, 18(6): 3049–3063. DOI: 10.1109/TWC.2019.2909205
DOI |
31 |
KSCHISCHANG F R, FREY B J, LOELIGER H A. Factor graphs and the sum-product algorithm [J]. IEEE transactions on information theory, 2001, 47(2): 498–519. DOI: 10.1109/18.910572
DOI |
32 |
LI S Y, YUAN W J, WEI Z Q, et al. Hybrid MAP and PIC detection for OTFS modulation [J]. IEEE transactions on vehicular technology, 2021, 70(7): 7193–7198. DOI: 10.1109/tvt.2021.3083181
DOI |
33 | 3GPP. Technical specification group radio access network: 3GPP TS 38.214 V15.0.0 [S]. 2017 |
34 | 3GPP. Technical specification group radio access network: 3GPP TS 38.212 V15.0.0 [S]. 2017 |
35 |
VENTURA-TRAVESET J, CAIRE G, BIGLIERI E, et al. Impact of diversity reception on fading channels with coded modulation. Part I: coherent detection [J]. IEEE transactions on communications, 1997, 45(5):563–572. DOI: 10.1109/26.592556
DOI |
36 | BIGLIERI E, PROAKIS J, SHAMAI S. Fading channels: Informationtheoretic and communications aspects [J]. IEEE transactions on information theory, 1998, 44(6):2619–2692 |
[1] | ZHANG Jintao, HE Zhenqing, RUI Hua, XU Xiaojing. Spectrum Sensing for OFDMA Using Multicarrier Covariance Matrix Aware CNN [J]. ZTE Communications, 2022, 20(3): 61-69. |
[2] | NAIKOTI Ashwitha, CHOCKALINGAM Ananthanarayanan. Signal Detection and Channel Estimation in OTFS [J]. ZTE Communications, 2021, 19(4): 16-33. |
[3] | ZHANG Zhengquan, LIU Heng, WANG Qianli, FAN Pingzhi. A Survey on Low Complexity Detectors for OTFS Systems [J]. ZTE Communications, 2021, 19(4): 3-15. |
[4] | YUAN Zhengdao, LIU Fei, GUO Qinghua, WANG Zhongyong. Message Passing Based Detection for Orthogonal Time Frequency Space Modulation [J]. ZTE Communications, 2021, 19(4): 34-44. |
[5] | LIU Mengmeng, LI Shuangyang, ZHANG Chunqiong, WANG Boyu, BAI Baoming. Coded Orthogonal Time Frequency Space Modulation [J]. ZTE Communications, 2021, 19(4): 54-62. |
[6] | MA Yiyan, MA Guoyu, WANG Ning, ZHONG Zhangdui, AI Bo. OTFS Enabled NOMA for MMTC Systems over LEO Satellite [J]. ZTE Communications, 2021, 19(4): 63-70. |
[7] | WANG Dong, WANG Fanggang, LI Xiran, YUAN Pu, JIANG Dajie. Orthogonal Time Frequency Space Modulation in Multiple-Antenna Systems [J]. ZTE Communications, 2021, 19(4): 71-78. |
[8] | Zekeriyya Esat Ankaralı, Berker Peköz, Hüseyin Arslan. Enhanced OFDM for 5G RAN [J]. ZTE Communications, 2017, 15(S1): 11-20. |
[9] | GUO Mengqi, ZHOU Ji, TANG Xizi, QIAO Yaojun. Layered ACO-FOFDM for IM/DD Systems [J]. ZTE Communications, 2017, 15(3): 56-62. |
[10] | Mohamed Sufyan Islim, Harald Haas. Modulation Techniques for Li-Fi [J]. ZTE Communications, 2016, 14(2): 29-40. |
[11] | Hung-Chang Chien, Jianjun Yu, Zhensheng Jia, and Ze Dong. Terabit Superchannel Transmission: A Nyquist-WDM Approach [J]. ZTE Communications, 2012, 10(4): 39-44. |
[12] | Jiangnan Xiao, Zizheng Cao, Fan Li, Jin Tang, and Lin Chen. Flipped-Exponential Nyquist Pulse Technique to Optimize PAPR in Optical Direct-Detection OFDM Systems [J]. ZTE Communications, 2012, 10(3): 16-21. |
[13] | Zhensheng Jia, Jianjun Yu, Hung-Chang Chien, Ze Dong, and Di Huo. Field Transmission of 100G and Beyond: Multiple Baud Rates and Mixed Line Rates Using Nyquist-WDM Technology [J]. ZTE Communications, 2012, 10(3): 28-38. |
[14] | Wei-Ren Peng, Itsuro Morita, Hidenori Takahashi, and Takehiro Tsuritani. Greater than 200 Gb/s Transmission Using Direct-Detection Optical OFDM Superchannel [J]. ZTE Communications, 2012, 10(1): 10-17. |
[15] | Xiangjun Xin. The Key Technology in Optical OFDM-PON [J]. ZTE Communications, 2012, 10(1): 40-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||