ZTE Communications ›› 2017, Vol. 15 ›› Issue (S1): 11-20.DOI: 10.3969/j.issn.1673-5188.2017.S1.002
• Special Topic • Previous Articles Next Articles
Zekeriyya Esat Ankaralı1, Berker Peköz1, Hüseyin Arslan1,2
Received:
2016-11-30
Online:
2017-06-25
Published:
2020-04-14
About author:
Zekeriyya Esat Ankaralı (zekeriyya@mail.usf.edu) received his B.Sc. degree in control engineering from Istanbul Technical University (ITU), Turkey in 2011 with honors degree and M.Sc. in electrical engineering from University of South Florida (USF), USA in December 2012. Since January 2013, he has been pursuing his Ph.D. as a member of the Wireless Communication and Signal Processing (WCSP) Group at USF. His current research interests are waveform design, multicarrier systems, physical layer security and in vivo communications.|Berker Peköz (pekoz@mail.usf.edu) received his B.Sc. degree in electrical and electronics engineering from Middle East Technical University (METU), Turkey in 2015 with high honors degree. Since August 2015, he has been pursuing his Ph.D. as a member of the Wireless Communication and Signal Processing (WCSP) Group at University of South Florida (USF), USA. His current research interests are mmWave communications, multidimensional modulations and waveform design.|Huseyin Arslan (arslan@usf.edu) received his B.S. degree from Middle East Technical University (METU), Turkey in 1992; M.S. and Ph.D. degreesfrom Southern Methodist University (SMU), USA in 1994 and 1998. From January 1998 to August 2002, he was with the research group of Ericsson Inc., USA, where he was involved with several project related to 2G and 3G wireless communication systems. Since August 2002, he has been with the Electrical Engineering Dept. of University of South Florida (USF), USA. Also, he has been the dean of the College of Engineering and Natural Sciences of Istanbul Medipol University, Turkey since 2014. In addition, he has worked as part time consultant for various companies and institutions including Anritsu Company (USA) and The Scientific and Technological Research Council of Turkey. His current research interests include physical layer security, mmWave communications, small cells, multi-carrier wireless technologies, co-existence issues on heterogeneous networks, aeronautical (high altitude platform) communications and in vivo channel modeling, and system design.
Zekeriyya Esat Ankaralı, Berker Peköz, Hüseyin Arslan. Enhanced OFDM for 5G RAN[J]. ZTE Communications, 2017, 15(S1): 11-20.
[1] | J. G. Andrews, S. Buzzi, W. Choi , et al., “What will 5G be?” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065-1082, Jun. 2014. doi: 10.1109/JSAC.2014.2328098. |
[2] | FP7. (2012). European Project 318555 5G NOW (5th Generation Non-Orthogonal Waveforms for Asynchronous Signaling) [Online]. Available: http://www.5gnow.eu |
[3] | FP7. ( 2012). European Project 317669 METIS (Mobile and Wireless Communications Enablers for the Twenty-Twenty Information Society) [Online]. Available: https://www.metis2020.com |
[4] | FP7. ( 2016. European Project (FP7-ICT-619563) miWaveS (Beyond 2020 Heterogeneous Wireless Networks with Millimeter-Wave Small Cell Access and Backhauling) [Online]. Available: http://www.miwaves.eu |
[5] | Fantastic 5G. ( 2016. Horizon 2020 project (ICT-671660) FANTASTIC-5G (Flexible Air Interface for Scalable Service Delivery within Wireless Communication Networks of the 5th Generation) [Online]. Available: http://fantastic5g.eu |
[6] | S. Methley, W. Webb, S. Walker, J. Parker , “5G candidate band study: study on the suitability of potential candidate frequency bands above 6 GHz for future 5G mobile broadband systems,” Quotient Associates Ltd, Tech. Rep., 2015. |
[7] | B. Farhang Boroujeny , “Filter bank multicarrier modulation: a waveform candidate for 5G and beyond,” Advances in Electrical Engineering, vol. 2014, Dec. 2014. doi: 10.1155/2014/482805 |
[8] | A. Şahin, I. Güvenç, H. Arslan , “A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1312-1338, Aug. 2014. doi: 10.1109/SURV.2013.121213.00263. |
[9] | F. Hu , Opportunities in 5G Networks: A Research and Development Perspective. Boca Raton, USA: CRC Press, 2016. |
[10] | 5G5G Forum. (2016, Mar.). 5G white paper: 5G vision, requirements, and enabling technologies [Online]. Available: http://kani.or.kr/5g/whitepaper/5G%20Vision,%20Requirements,%20and%20Enabling%20Technologies.pdf |
[11] | G. Wunder, P. Jung, M. Kasparick , et al., “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Communications Magazine, vol. 52, no. 2, pp. 97-105, 2014. doi: 10.1109/MCOM.2014.6736749. |
[12] | J. Li, E. Bala, R. Yang , “Resource block filtered-OFDM for future spectrally agile and power efficient systems,” Physical Communication, vol. 11, pp. 36-55, 2014. doi: 10.1016/j.phycom.2013.10.003. |
[13] | I. F. Akyildiz, S. Nie, S. Lin, M. Chandrasekaran , “5G roadmap: 10 key enabling technologies,” Computer Networks, vol. 106, pp. 17-48, 2016. doi: 10.1016/j.comnet.2016.06.010. |
[14] | G. Fettweis, M. Krondorf, S. Bittner , “GFDM—generalized frequency division multiplexing,” in Proc. IEEE 69th Vehicular Technology Conference, Barcelona, Spain, Apr. 2009, pp. 1-4. doi: 10.1109/VETECS.2009.5073571. |
[15] | R. Datta, G. Fettweis, Z. Kollár, P. Horváth , “FBMC and GFDM interference cancellation schemes for flexible digital radio PHY design,” in Proc. 14th Euromicro Conference on Digital System Design, Washington DC, USA, 2011, pp. 335-339. doi: 10.1109/DSD.2011.48. |
[16] | Qualcomm Inc ., “Waveform candidates,” 3GPP Standard Contribution (R1-162199), Busan, Korea, Apr. 2016. |
[17] | Huawei and HiSilicon, “5G waveform: requirements and design principles,” 3GPP Standard Contribution (R1-162151), Busan, Korea, Apr. 2016. |
[18] | Huawei and HiSilicon, “F-OFDM scheme and filter design,” 3GPP Standard Contribution (R1-165425), Nanjing, China, May 2016..” |
[19] | W. Jiang and M. Schellmann , “Suppressing the out-of-band power radiation in multi-carrier systems: A comparative study,” in Proc. IEEE Global Telecommunications Conference, Anaheim, USA, Dec. 2012, pp. 1477-1482. doi: 10.1109/GLOCOM.2012.6503322. |
[20] | T. Weiss, J. Hillenbrand, A. Krohn, F. K. Jondral , “Mutual interference in OFDM-based spectrum pooling systems,” in Proc. 59th IEEE Vehicular Technology Conference, Milan, Italy, May 2004, vol. 4, pp. 1873-1877. doi: 10.1109/VETECS.2004.1390598. |
[21] | A. Sahin and H. Arslan , “Edge windowing for OFDM based systems,” IEEE Communications Letters, vol. 15, no. 11, pp. 1208-1211, Nov. 2011. doi: 10.1109/LCOMM.2011.090611.111530. |
[22] | S. Brandes, I. Cosovic, M. Schnell , “Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers,” IEEE Communications Letters, vol. 10, no. 6, pp. 420-422, Jun. 2006. doi: 10.1109/LCOMM.2006.1638602. |
[23] | D. Qu, Z. Wang, T. Jiang , “Extended active interference cancellation for sidelobe suppression in cognitive radio OFDM Systems with cyclic prefix,” IEEE Transactions on Vehicular Technology, vol. 59, no. 4, pp. 1689-1695, May 2010. doi: 10.1109/TVT.2010.2040848. |
[24] | I. Cosovic, S. Brandes, M. Schnell , “Subcarrier weighting: a method for sidelobe suppression in OFDM systems,” IEEE Communications Letters, vol. 10, no. 6, pp. 444-446, Jun. 2006. doi: 10.1109/LCOMM.2006.1638610. |
[25] | A. Tom, A. Sahin, H. Arslan , “Mask compliant precoder for OFDM spectrum shaping,” IEEE Communications Letters, vol. 17, no. 3, pp. 447-450, Mar. 2013. doi: 10.1109/LCOMM.2013.020513.122495. |
[26] | Y. Rahmatallah and S. Mohan , “Peak-to-average power ratio reduction in OFDM systems: a survey and taxonomy,” IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 1567-1592, Fourth Quarter 2013. doi: 10.1109/SURV.2013.021313.00164. |
[27] | A. Ghassemi, L. Lampe, A. Attar, T. A. Gulliver , “Joint sidelobe and peak power reduction in OFDM-based cognitive radio,” in Proc. IEEE 72nd Vehicular Technology Conference, San Francisco, USA, pp. 1-5, Sept. 2010. doi: 10.1109/VETECF.2010.5594133. |
[28] | E. Güvenkaya, A. Tom, H. Arslan , “Joint sidelobe suppression and PAPR reduction in OFDM using partial transmit sequences,” in Proc. IEEE Military Communications Conference, San Diego, USA, Nov. 2013, pp. 95-100. doi: 10.1109/MILCOM.2013.26. |
[29] | C. Ni, T. Jiang, W. Peng , “Joint PAPR reduction and sidelobe suppression using signal cancelation in NC-OFDM-based cognitive radio systems,” IEEE Transactions on Vehicular Technology, vol. 64, no. 3, pp. 964- 972, Mar. 2015. doi: 10.1109/TVT.2014.2327012. |
[30] | A. Tom, A. Sahin, H. Arslan , “Suppressing alignment: An approach for out-of-band interference reduction in OFDM systems,” in Proc. IEEE International Conference on Communications, London, UK, Jun. 2015, pp. 4630-4634. doi: 10.1109/ICC.2015.7249053. |
[31] | M. Maso, M. Debbah, L. Vangelista , “A distributed approach to interference alignment in OFDM-based two-tiered networks,” IEEE Transactions on Vehicular Technology, vol. 62, no. 5, pp. 1935-1949, Jun. 2013. doi: 10.1109/TVT.2013.2245516. |
[32] | Z. E. Ankarali, A. Sahin, H. Arslan , “Static cyclic prefix alignment for OFDM-based waveforms,” in Proc. IEEE Global Communications Conference and Workshops, Washington, USA, Dec. 2016. doi: 10.1109/GLOCOMW.2016.7849051. |
[33] | Z. E.Ankarali, H. Arslan . “Joint physical layer security and PAPR mitigation in OFDM systems,” U.S. Patent No. 9,479,375. Oct. 2016. |
[34] | S. Rajagopal, S. Abu Surra, A. Gupta , et al., “Methods and apparatus for cyclic prefix reduction in mmwave mobile communication systems,” U.S. Patent US20 130 315 321 A1, Nov. 2013. |
[35] | E. Zoechmann, S. Pratschner, S. Schwarz, M. Rupp , “MIMO transmission over high delay spread channels with reduced cyclic prefix length,” in Proc. 19th International ITG Workshop on Smart Antennas (WSA), Ilmenau, Germany, Mar. 2015, pp. 1-8. |
[36] | T. Pham, T. Le Ngoc, G. Woodward, P. A. Martin, K. T. Phan , “Equalization for MIMO-OFDM systems with insufficient cyclic prefix,” in Proc. IEEE 83th Vehicular Technology Conference, Nanjing, China, May 2016, pp. 1-5. doi: 10.1109/VTCSpring.2016.7504240. |
[37] | A. Sahin and H Arslan , “Multi-user aware frame structure for OFDMA based system,” in Proc. IEEE 76th Vehicular Technology Conference, Quebec City, Canada, Sept. 2012, pp. 1-5. doi: 10.1109/VTCFall.2012.6399155. |
[38] | ZTE, “Consideration of cyclic prefix for NR,” 3GPP Standard Contribution (R1-166406), Gothenburg, Sweden, Aug. 2016.” |
[39] | ZTE, “Support of Multiple CP Families for NR,” 3GPP Standard Contribution (R1-1608962), Lisbon, Portugal, Oct. 2016.” |
[40] | J. Lorca , “Cyclic prefix overhead reduction for low-latency wireless communications in OFDM,” in Proc. IEEE 81st Vehicular Technology Conference, Glasgow, UK, May 2015, pp. 1-5. doi: 10.1109/VTCSpring.2015.7145767. |
[41] | O. Elijah, C. Y. Leow, T. A. Rahman, S. Nunoo, S. Z. Iliya , “A comprehensive survey of pilot contamination in massive MIMO-5G system,” IEEE Communications Surveys & Tutorials., vol. 18, no. 2, pp. 905-923, 2016. doi: 10.1109/COMST.2015.2504379. |
[42] | P. Walk, H. Becker, P. Jung , “OFDM channel estimation via phase retrieval,” in Proc. 49th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, Nov. 2015, pp. 1161-1168. doi: 10.1109/ACSSC. 2015.7421323. |
[43] | V. Saxena , “Pilot contamination and mitigation techniques in massive MIMO systems,” M.S. Thesis, Lund University, Stockholm, Sweden, 2014. |
[44] | X. Luo, X. Zhang, H. Qian, K. Kang , “Pilot decontamination via PDP alignment,” in Proc. IEEE Global Communications Conference, Washington DC, USA, Dec. 2016, pp. 1-6. doi: 10.1109/GLOCOM.2016.7842147. |
[45] | R. R. Müller, L. Cottatellucci, M. Vehkaperä , “Blind pilot decontamination,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 773-786, Oct. 2014. doi: 10.1109/JSTSP.2014.2310053. |
[46] | D. Hu, L. He, X. Wang , “Semi-blind pilot decontamination for massive MIMO systems,” IEEE Transactions on Wireless Communications, vol. 15, no. 1, pp. 525-536, Jan. 2016. doi: 10.1109/TWC.2015.2475745. |
[47] | A. A. Zaidi, R. Baldemair, H. Tullberg , et al., “Waveform and numerology to support 5G services and requirements,” IEEE Communications Magazine, vol. 54, no. 11, pp. 90-98, Nov. 2016. doi: 10.1109/MCOM.2016.1600336CM. |
[48] | C. Hofbauer, M. Huemer, J. B. Huber , “Coded OFDM by unique word prefix,” in Proc. IEEE International Conference on Communication Systems, Singapore, Singapore, Nov. 2010, pp. 426-430. doi: 10.1109/ICCS.2010.5686520. |
[49] | M. Huemer, C. Hofbauer, J. B. Huber , “Non-systematic complex number RS coded OFDM by unique word prefix,” IEEE Transactions on Signal Processing, vol. 60, no. 1, pp. 285-299, Jan. 2012. doi: 10.1109/TSP.2011.2168522. |
[50] | A. Onic and M. Huemer , “Noise interpolation for unique word OFDM,” IEEE Signal Processing Letters, vol. 21, no. 7, pp. 814-818, Jul. 2014. doi: 10.1109/LSP.2014.2317512. |
[51] | M. Huemer, A. Onic, C. Hofbauer , “Classical and Bayesian linear data estimators for unique word OFDM,” IEEE Transactions on Signal Processing, vol. 59, no. 12, pp. 6073-6085, Dec. 2011. doi: 10.1109/TSP.2011.2164912. |
[52] | H. Holma and A. Toskala , Eds., LTE for UMTS: Evolution to LTE- Advanced, 2nd ed. Chichester, UK: Wiley, 2011. |
[53] | S. Sesia, I. Toufik, M. P. J. Baker , Eds., LTE - the UMTS Long Term Evolution: from Theory to Practice. Chichester, UK: Wiley, 2009. |
[54] | C. F. Gauss , “Nachlass: Theoria interpolationis methodo nova tractata,” pp. 265-303, Carl Friedrich Gauss, Werke, Band 3, Gottingen: Koniglichen Gesellschaft der Wissenschaften, 1866. |
[55] | A. Sahin, R. Yang, M. Ghosh, R. L. Olesen , “An improved unique word DFT-spread OFDM scheme for 5G systems,” in Proc. IEEE Global Telecommunications Conference and Workshops, San Diego, USA, Dec. 2015, pp. 1-6. doi: 10.1109/GLOCOMW.2015.7414173. |
[56] | G. Berardinelli, F. M. L. Tavares T. B Sorensen P. Mogensen and Pajukoski , “Zero-tail DFT-spread-OFDM signals,” in Proc. IEEE Global Telecommunications Conference and Workshops, Atlanta, USA, Dec. 2013, pp. 229-234. doi: 10.1109/GLOCOMW.2013.6824991. |
[57] | G. Berardinelli, F. Tavares, T. Sorensen, P. Mogensen, K. Pajukoski , “On the potential of Zero-Tail DFT-spread-OFDM in 5G networks,” in Proc. IEEE 80th Vehicular Technology Conference, Sept. 2014, pp. 1-6. doi: 10.1109/VTCFall.2014.6966089. |
[58] | G. Berardinelli, K. I. Pedersen, T. B. Sorensen, P. Mogensen , “Generalized DFT-spread-OFDM as 5G waveform,” IEEE Communications Magazine, vol. 54, no. 11, pp. 99-105, Nov. 2016. doi: 10.1109/MCOM.2016.1600313CM. |
[59] | A. Sahin, R. Yang, E. Bala, M. C. Beluri, R. L. Olesen , “Flexible DFT-S-OFDM: solutions and challenges,” IEEE Communications Magazine, vol. 54, no. 11, pp. 106-112, Nov. 2016. doi: 10.1109/MCOM.2016.1600330CM. |
[1] | ZHANG Jintao, HE Zhenqing, RUI Hua, XU Xiaojing. Spectrum Sensing for OFDMA Using Multicarrier Covariance Matrix Aware CNN [J]. ZTE Communications, 2022, 20(3): 61-69. |
[2] | ZHANG Chong, XING Wang, YUAN Jinhong, ZHOU Yiqing. Performance of LDPC Coded OTFS Systems over High Mobility Channels [J]. ZTE Communications, 2021, 19(4): 45-53. |
[3] | LIU Mengmeng, LI Shuangyang, ZHANG Chunqiong, WANG Boyu, BAI Baoming. Coded Orthogonal Time Frequency Space Modulation [J]. ZTE Communications, 2021, 19(4): 54-62. |
[4] | XIAO Kai, LIU Xing, HAN Xianghui, HAO Peng, ZHANG Junfeng, ZHOU Dong, WEI Xingguang. Flexible Multiplexing Mechanism for Coexistence of URLLC and EMBB Services in 5G Networks [J]. ZTE Communications, 2021, 19(2): 82-90. |
[5] | HUANG He, LIU Yang, LIU Zhuang, HAN Jiren, GAO Yin. Mechanism of Fast Data Retransmission in CU-DU Split Architecture of 5G NR [J]. ZTE Communications, 2018, 16(3): 40-44. |
[6] | GUO Mengqi, ZHOU Ji, TANG Xizi, QIAO Yaojun. Layered ACO-FOFDM for IM/DD Systems [J]. ZTE Communications, 2017, 15(3): 56-62. |
[7] | Mohamed Sufyan Islim, Harald Haas. Modulation Techniques for Li-Fi [J]. ZTE Communications, 2016, 14(2): 29-40. |
[8] | Hung-Chang Chien, Jianjun Yu, Zhensheng Jia, and Ze Dong. Terabit Superchannel Transmission: A Nyquist-WDM Approach [J]. ZTE Communications, 2012, 10(4): 39-44. |
[9] | Jiangnan Xiao, Zizheng Cao, Fan Li, Jin Tang, and Lin Chen. Flipped-Exponential Nyquist Pulse Technique to Optimize PAPR in Optical Direct-Detection OFDM Systems [J]. ZTE Communications, 2012, 10(3): 16-21. |
[10] | Zhensheng Jia, Jianjun Yu, Hung-Chang Chien, Ze Dong, and Di Huo. Field Transmission of 100G and Beyond: Multiple Baud Rates and Mixed Line Rates Using Nyquist-WDM Technology [J]. ZTE Communications, 2012, 10(3): 28-38. |
[11] | Wei-Ren Peng, Itsuro Morita, Hidenori Takahashi, and Takehiro Tsuritani. Greater than 200 Gb/s Transmission Using Direct-Detection Optical OFDM Superchannel [J]. ZTE Communications, 2012, 10(1): 10-17. |
[12] | Xiangjun Xin. The Key Technology in Optical OFDM-PON [J]. ZTE Communications, 2012, 10(1): 40-44. |
[13] | R. Neil Braithwaite. Crest Factor Reduction for OFDM Using Selective Subcarrier Degradation [J]. ZTE Communications, 2011, 9(4): 25-31. |
[14] | Fa-Long Luo, Ward Williams, and Bruce Gladstone. An Antenna Diversity Scheme for Digital Front-End with OFDM Technology [J]. ZTE Communications, 2011, 9(4): 32-34. |
[15] | Rongzhen Yang and Hujun Yin. Uplink Power Control for MIMO-OFDMA Cellular Systems [J]. ZTE Communications, 2011, 9(4): 55-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||