ZTE Communications ›› 2021, Vol. 19 ›› Issue (4): 71-78.DOI: 10.12142/ZTECOM.202104008
• Special Topic • Previous Articles Next Articles
WANG Dong1, WANG Fanggang1(), LI Xiran1, YUAN Pu2, JIANG Dajie2
Received:
2021-10-13
Online:
2021-12-25
Published:
2022-01-04
About author:
WANG Dong received the B.Eng. degree from the School of Electronic and Information Engineering, Hebei University, China in 2016. He is currently pursuing the Ph.D. degree with the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China. His current research interests include multiway relaying communications and MIMO communications.|WANG Fanggang (Supported by:
WANG Dong, WANG Fanggang, LI Xiran, YUAN Pu, JIANG Dajie. Orthogonal Time Frequency Space Modulation in Multiple-Antenna Systems[J]. ZTE Communications, 2021, 19(4): 71-78.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202104008
Parameters | Values |
---|---|
Number of OTFS symbols | 14 |
Number of subcarriers | 16, 64 |
Carrier frequency | 4 GHz |
Subcarrier spacing | 15 KHz |
Number of transmit antennas | 2 |
Pulse shaping | Rectangular |
Table 1 Setup of simulation parameters
Parameters | Values |
---|---|
Number of OTFS symbols | 14 |
Number of subcarriers | 16, 64 |
Carrier frequency | 4 GHz |
Subcarrier spacing | 15 KHz |
Number of transmit antennas | 2 |
Pulse shaping | Rectangular |
1 |
LI S Y, YUAN W J, WEI Z Q, et al. A tutorial to orthogonal time frequency space modulation for future wireless communications [C]//2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops). Xiamen, China, 2021: 439–443. DOI: 10.1109/ICCCWorkshops52231.2021.9538891
DOI |
2 |
WEI Z Q, YUAN W J, LI S Y, et al. Orthogonal time-frequency space modulation: a promising next-generation waveform [J]. IEEE wireless communications. 2021, 4(28): 136–144. DOI: 10.1109/MWC.001.2000408
DOI |
3 |
RAVITEJA P, PHAN K T, HONG Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation [J]. IEEE transactions on wireless communications, 2018, 17(10): 6501–6515. DOI: 10.1109/TWC.2018.2860011
DOI |
4 |
LI S Y, YUAN W J, Wei Z Q, et al. Cross domain iterative detection for orthogonal time frequency space modulation [J]. IEEE transactions on wireless communications. 2021. DOI: 10.1109/TWC.2021.3110125
DOI |
5 |
QU H Y, LIU G H, ZHANG L, et al. Low-complexity symbol detection and interference cancellation for OTFS system [J]. IEEE transactions on communications, 2021, 69(3): 1524–1537. DOI: 10.1109/TCOMM.2020.3043007
DOI |
6 |
SURABHI G D, CHOCKALINGAM A. Low-complexity linear equalization for 2 × 2 MIMO-OTFS signals [C]//IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications. Atlanta, USA: IEEE, 2020: 1–5. DOI: 10.1109/SPAWC48557.2020.9154292
DOI |
7 |
SINGH P, MISHRA H B, BUDHIRAJA R. Low-complexity linear MIMO-OTFS receivers [C]//IEEE International Conference on Communications Workshops. Montreal, Canada: IEEE, 2021: 1–6. DOI:10.1109/ICCWorkshops50388.2021.9473839
DOI |
8 |
VUCETIC B, YUAN J H. Space-time coding [M]. Chichester, UK: John Wiley & Sons, 2003. DOI: 10.1002/047001413x
DOI |
9 |
ALAMOUTI S M. A simple transmit diversity technique for wireless communications [J]. IEEE journal on selected areas in communications, 1998, 16(8): 1451–1458. DOI: 10.1109/49.730453
DOI |
10 |
TAROKH V, SESHADRI N, CALDERBANK A R. Space-time codes for high data rate wireless communication: Performance criterion and code construction [J]. IEEE transactions on information theory, 1998, 44(2): 744–765. DOI:10.1109/18.661517
DOI |
11 |
BOMFIN R, CHAFII M, NIMR A, et al. Channel estimation for MIMO space time coded OTFS under doubly selective channels [C]//2021 IEEE International Conference on Communications Workshops. Montreal, Canada: IEEE, 2021: 1–6. DOI: 10.1109/ICCWorkshops50388.2021.9473618
DOI |
12 |
AUGUSTINE R M, SURABHI G D, CHOCKALINGAM A. Space-time coded OTFS modulation in high-Doppler channels [C]//IEEE 89th Vehicular Technology Conference. Kuala Lumpur, Malaysia: IEEE, 2019: 1–6. DOI: 10.1109/VTCSpring.2019.8746394
DOI |
13 | DELFELD J, RAKIB S S. Tomlinson-harashima precoding in an OTFS communication system: US11018731 [P]. 2021 |
14 | LIU Y, ZHANG S, GAO F F, et al. Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system [EB/OL]. (2020-03-16) [2021-09-18]. |
15 |
LI M Y, ZHANG S, GAO F F, et al. A new path division multiple access for the massive MIMO-OTFS networks [J]. IEEE journal on selected areas in communications, 2021, 39(4): 903–918. DOI: 10.1109/JSAC.2020.3018826
DOI |
16 |
PANDEY B C, MOHAMMED S K, RAVITEJA P, et al. Low complexity precoding and detection in multi-user massive MIMO OTFS downlink [J]. IEEE transactions on vehicular technology, 2021, 70(5): 4389–4405. DOI: 10.1109/TVT.2021.3061694
DOI |
17 |
HABENDORF R, IRMER R, RAVE W, et al. Nonlinear multiuser precoding for non-connected decision regions [C]//IEEE Workshop on Signal Processing Advances in Wireless Communications. New York, USA: IEEE, 2005., 535–539, DOI: 10.1109/SPAWC.2005.1506197
DOI |
18 |
KUSUME K, JOHAM M, UTSCHICK W, et al. Efficient Tomlinson-Harashima precoding for spatial multiplexing on flat MIMO channel [C]//IEEE International Conference on Communication. Seoul, Korea (South): IEEE, 2005: 2021–2025. DOI: 10.1109/ICC.2005.1494693
DOI |
19 |
JAFARKHANI H. A quasi-orthogonal space-time block code [J]. IEEE transactions on communications, 2001, 1(49): 1–4, DOI: 10.1109/26.898239
DOI |
20 |
QU H Y, LIU G H, ZHANG L, et al. Low-dimensional subspace estimation of continuous-Doppler-spread channel in OTFS systems [J]. IEEE transactions on communications, 2021, 69(7): 4717–4731. DOI:10.1109/TCOMM.2021.3072744
DOI |
21 |
RAVITEJA P, PHAN K T, HONG Y. Embedded pilot-aided channel estimation for OTFS in delay–Doppler channels [J]. IEEE transactions on vehicular technology, 2019, 68(5): 4906–4917. DOI: 10.1109/TVT.2019.2906357
DOI |
[1] | ZHOU Mingyong, CHEN Xiangyu, TANG Wankai, KE Jun Chen, JIN Shi, CHENG Qiang, CUI Tie Jun. Dual‑Polarized RIS‑Based STBC Transmission with Polarization Coupling Analysis [J]. ZTE Communications, 2022, 20(1): 63-75. |
[2] | NAIKOTI Ashwitha, CHOCKALINGAM Ananthanarayanan. Signal Detection and Channel Estimation in OTFS [J]. ZTE Communications, 2021, 19(4): 16-33. |
[3] | ZHANG Zhengquan, LIU Heng, WANG Qianli, FAN Pingzhi. A Survey on Low Complexity Detectors for OTFS Systems [J]. ZTE Communications, 2021, 19(4): 3-15. |
[4] | YUAN Zhengdao, LIU Fei, GUO Qinghua, WANG Zhongyong. Message Passing Based Detection for Orthogonal Time Frequency Space Modulation [J]. ZTE Communications, 2021, 19(4): 34-44. |
[5] | ZHANG Chong, XING Wang, YUAN Jinhong, ZHOU Yiqing. Performance of LDPC Coded OTFS Systems over High Mobility Channels [J]. ZTE Communications, 2021, 19(4): 45-53. |
[6] | LIU Mengmeng, LI Shuangyang, ZHANG Chunqiong, WANG Boyu, BAI Baoming. Coded Orthogonal Time Frequency Space Modulation [J]. ZTE Communications, 2021, 19(4): 54-62. |
[7] | MA Yiyan, MA Guoyu, WANG Ning, ZHONG Zhangdui, AI Bo. OTFS Enabled NOMA for MMTC Systems over LEO Satellite [J]. ZTE Communications, 2021, 19(4): 63-70. |
[8] | JIANG Wei. Device-to-Device Based Cooperative Relaying for 5G Network: A Comparative Review [J]. ZTE Communications, 2017, 15(S1): 60-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||