ZTE Communications ›› 2025, Vol. 23 ›› Issue (1): 101-106.DOI: 10.12142/ZTECOM.202501013
• Research Papers • Previous Articles Next Articles
DONG Anhua1, LIANG Haodong2, ZHU Shaohao2, ZHANG Qi1, ZHAO Deshuang1()
Received:
2024-03-04
Online:
2025-03-25
Published:
2025-03-25
About author:
DONG Anhua received his BS degree from Jilin University, China in 2021. He is currently pursuing his ME degree at University of Electronic Science and Technology of China. His research interests include the positioning of radiated passive inter-modulation.DONG Anhua, LIANG Haodong, ZHU Shaohao, ZHANG Qi, ZHAO Deshuang. Precise Location of Passive Intermodulation in Long Cables by Fractional Frequency Based Multi-Range Rulers[J]. ZTE Communications, 2025, 23(1): 101-106.
Figure 2 Block diagram of the FF-MRR system to locate PIM source. 1: local oscillator with flo, 2: fractional frequency control signal with f0, 3: the first signal source at f1, 4: the second signal source at f2, 5: modulator, 6: filter, 7 and 8: power amplifiers, 9: combiner, 10: forward coupler, 11: backward coupler, 12: passive mixer, 13: low noise amplifier, 14 and 15: filters, 16 and 17: down converters, 18 and 19: low pass filters, 20 and 21: analog-to-digital converters, 22: PIM source, 23: RF cable, 24: matching load, and 25: MCU
First Signal Source f1/MHz | Second Signal Source f2/MHz | Highest Fractional Frequency fs /MHz | Fractional Frequency Control Signal f0/MHz | Local Oscillator Signal flo/MHz |
---|---|---|---|---|
1 820 | 1 880 | 200 | 780 | 190 |
Table 1 Setup of frequency-related conditions in the simulation
First Signal Source f1/MHz | Second Signal Source f2/MHz | Highest Fractional Frequency fs /MHz | Fractional Frequency Control Signal f0/MHz | Local Oscillator Signal flo/MHz |
---|---|---|---|---|
1 820 | 1 880 | 200 | 780 | 190 |
Relative Dielectric Constant of Cable | Signal-to-Noise Ratio/dB | Phase Discrimination Accuracy/(°) |
---|---|---|
2 | 10 | 1 |
Table 2 Setup of other conditions in the simulation
Relative Dielectric Constant of Cable | Signal-to-Noise Ratio/dB | Phase Discrimination Accuracy/(°) |
---|---|---|
2 | 10 | 1 |
Distance/m | Error#1/mm | Error#2/mm | Error#3/mm | Error#4/mm | Error#5/mm | Average Error/mm |
---|---|---|---|---|---|---|
20 | 0.692 | 0.795 | 0.751 | 0.780 | 0.721 | 0.747 8 |
18 | 0.467 | 0.557 | 0.287 | 0.287 | 0.467 | 0.413 0 |
16 | 0.336 | 0.336 | 0.236 | 0.336 | 0.236 | 0.296 0 |
14 | 0.741 | 0.719 | 0.732 | 0.727 | 0.732 | 0.730 2 |
12 | 0.300 | 0.519 | 0.339 | 0.191 | 0.300 | 0.329 8 |
10 | 0.332 | 0.575 | 0.413 | 0.494 | 0.332 | 0.429 2 |
7 | 0.433 | 0.357 | 0.509 | 0.509 | 0.585 | 0.478 6 |
5 | 0.280 | 0.280 | 0.508 | 0.166 | 0.166 | 0.280 0 |
3 | 0.689 | 0.737 | 0.737 | 0.717 | 0.746 | 0.735 2 |
1 | 0.504 | 0.262 | 0.357 | 0.452 | 0.357 | 0.386 4 |
0.7 | 0.259 | 0.259 | 0.450 | 0.641 | 0.641 | 0.450 0 |
0.5 | 0.658 | 0.710 | 0.710 | 0.658 | 0.658 | 0.678 8 |
0.3 | 0.780 | 0.693 | 0.564 | 0.607 | 0.607 | 0.650 5 |
0.1 | 0.174 | 0.399 | 0.286 | 0.174 | 0.286 | 0.263 8 |
Table 3 Simulation ranging error of 200 MHz ruler signal under different distances to be measured
Distance/m | Error#1/mm | Error#2/mm | Error#3/mm | Error#4/mm | Error#5/mm | Average Error/mm |
---|---|---|---|---|---|---|
20 | 0.692 | 0.795 | 0.751 | 0.780 | 0.721 | 0.747 8 |
18 | 0.467 | 0.557 | 0.287 | 0.287 | 0.467 | 0.413 0 |
16 | 0.336 | 0.336 | 0.236 | 0.336 | 0.236 | 0.296 0 |
14 | 0.741 | 0.719 | 0.732 | 0.727 | 0.732 | 0.730 2 |
12 | 0.300 | 0.519 | 0.339 | 0.191 | 0.300 | 0.329 8 |
10 | 0.332 | 0.575 | 0.413 | 0.494 | 0.332 | 0.429 2 |
7 | 0.433 | 0.357 | 0.509 | 0.509 | 0.585 | 0.478 6 |
5 | 0.280 | 0.280 | 0.508 | 0.166 | 0.166 | 0.280 0 |
3 | 0.689 | 0.737 | 0.737 | 0.717 | 0.746 | 0.735 2 |
1 | 0.504 | 0.262 | 0.357 | 0.452 | 0.357 | 0.386 4 |
0.7 | 0.259 | 0.259 | 0.450 | 0.641 | 0.641 | 0.450 0 |
0.5 | 0.658 | 0.710 | 0.710 | 0.658 | 0.658 | 0.678 8 |
0.3 | 0.780 | 0.693 | 0.564 | 0.607 | 0.607 | 0.650 5 |
0.1 | 0.174 | 0.399 | 0.286 | 0.174 | 0.286 | 0.263 8 |
PIM Locating Technology | Scenario | Distance/m | Working Frequency/MHz | Error/mm |
---|---|---|---|---|
The near-field scanning[ | Microstrip line | 0.21 | 935–960 | 10 |
Acoustic vibration[ | Antenna | – | 1 850–1 990 | 10 |
K-space muti-carrier signals[ | Cables | 2.437 | 1 125–1 175 | 37.5 |
Emission source microsopy[ | PCB | 0.7 | 1 932–1 985 | 5 |
Our work | Cables | 20 | 1 805–1 880 | 0.519 |
Table 4 Comparison of various PIM locating technologies
PIM Locating Technology | Scenario | Distance/m | Working Frequency/MHz | Error/mm |
---|---|---|---|---|
The near-field scanning[ | Microstrip line | 0.21 | 935–960 | 10 |
Acoustic vibration[ | Antenna | – | 1 850–1 990 | 10 |
K-space muti-carrier signals[ | Cables | 2.437 | 1 125–1 175 | 37.5 |
Emission source microsopy[ | PCB | 0.7 | 1 932–1 985 | 5 |
Our work | Cables | 20 | 1 805–1 880 | 0.519 |
1 | CAI Z H, LIU L, DE PAULIS F, et al. Passive intermodulation measurement: challenges and solutions [J]. Engineering, 2022, 14: 181–191. DOI: 10.1016/j.eng.2022.02.012 |
2 | ZHANG L, WANG H G, HE S T, et al. A segmented polynomial model to evaluate passive intermodulation products from low-order PIM measurements [J]. IEEE microwave and wireless components letters, 2019, 29(1): 14–16. DOI: 10.1109/LMWC.2018.2883719 |
3 | WANG X L, CHEN X, SUN D Q. A compact contactless waveguide band-pass filter for high sensitivity passive intermodulation measurement [C]//Proceedings of IEEE MTT-S International Wireless Symposium (IWS). IEEE, 2023: 1–3. DOI: 10.1109/IWS58240.2023.10223117 |
4 | ISHIBASHI D, KUGA N. Numerical analysis of DUT-size effect on PIM measurement using standing-wave coaxial tube [C]//Asia Pacific Microwave Conference. IEEE, 2009: 2609–2612. DOI: 10.1109/APMC.2009.5385244 |
5 | CANTALI G, DENIZ E, OZAY O, et al. PIM detection in wireless networks as an anomaly detection problem [C]//International Balkan Conference on Communications and Networking (BalkanCom). IEEE, 2023: 1–6. DOI: 10.1109/BalkanCom58402.2023.10167980 |
6 | WANG W B, WANG Y M, ZANG W X, et al. Physical mechanisms of passive intermodulation: a short review [C]//International Applied Computational Electromagnetics Society Symposium (ACES-China). IEEE, 2022: 1–3. DOI: 10.1109/ACES-China56081.2022.10064913 |
7 | XU Z. Research on electromagnetic interference source location algorithm based on near-field scanning [D]. Hangzhou: Zhejiang University, 2022. DOI: 10.27461/d.cnki.gzjdx.2022.000065 |
8 | YONG S, YANG S, ZHANG L, et al. Passive intermodulation source localization based on emission source microscopy [J]. IEEE transactions on electromagnetic compatibility, 2020, 62(1): 266–271. DOI: 10.1109/TEMC.2019.2938634 |
9 | YANG S, WU W, XU S, et al. A passive intermodulation source identification measurement system using a vibration modulation method [J]. IEEE transactions on electromagnetic compatibility, 2017, 59(6): 1677–1684. DOI: 10.1109/TEMC.2017.2705114 |
10 | ZHANG M, ZHENG C, WANG X, et al. Localization of passive intermodulation based on the concept of K-space multicarrier signal [J]. IEEE transactions on microwave theory and techniques, 2017, 65(12): 4997–5008. DOI: 10.1109/TMTT.2017.2705099 |
11 | LIU X H. Design of pulsed semiconductor laser ranging system [D]. Hohhot: Inner Mongolia University, 2014 |
12 | SHITVOV P A, ZELENCHUK E D, SCHUCHINSKY G A, et al. Passive intermodulation generation on printed lines: near-field probing and observations [J]. IEEE transactions on microwave theory and techniques, 2008, 56(12): 3121–3128, DOI: 10.1109/TMTT.2008.2007136 |
[1] | BAI Yongjiang, YANG Jiye, ZHU Shaohao, YANG Ye, YE Ming. A Filtering Coaxial Probe for Passive Intermodulation Characterization [J]. ZTE Communications, 2024, 22(4): 59-66. |
[2] | DING Yahao, SHIKH‑BAHAEI Mohammad, YANG Zhaohui, HUANG Chongwen, YUAN Weijie. Secure Federated Learning over Wireless Communication Networks with Model Compression [J]. ZTE Communications, 2023, 21(1): 46-54. |
[3] | HUANG Rui, LI Huilin, ZHANG Yongmin. Efficient Bandwidth Allocation and Computation Configuration in Industrial IoT [J]. ZTE Communications, 2023, 21(1): 55-63. |
[4] | ZHAO Zipiao, ZHAO Yongli, YAN Boyuan, WANG Dajiang. Auxiliary Fault Location on Commercial Equipment Based on Supervised Machine Learning [J]. ZTE Communications, 2022, 20(S1): 7-15. |
[5] | XU Yongjun, YANG Zhaohui, HUANG Chongwen, YUEN Chau, GUI Guan. Resource Allocation for Two‑Tier RIS‑Assisted Heterogeneous NOMA Networks [J]. ZTE Communications, 2022, 20(1): 36-47. |
[6] | LIU Junyu, YANG Yongjian, WANG En. BPPF: Bilateral Privacy-Preserving Framework for Mobile Crowdsensing [J]. ZTE Communications, 2021, 19(2): 20-28. |
[7] | JI Hong, ZHANG Tianxiang, ZHANG Kai, WANG Wanyuan, WU Weiwei. Efficient Network Slicing with Dynamic Resource Allocation [J]. ZTE Communications, 2021, 19(1): 11-19. |
[8] | DENG Xu, ZHU Lidong. Resource Allocation Strategy Based on Matching Game [J]. ZTE Communications, 2020, 18(4): 10-17. |
[9] | CHEN Liangqin, TIAN Liping, XU Zhimeng, CHEN Zhizhang. A Survey of Wi-Fi Sensing Techniques with Channel State Information [J]. ZTE Communications, 2020, 18(3): 57-63. |
[10] | JIANG Zhihui, HE Yinghui, YU Guanding. Joint User Selection and Resource Allocation for Fast Federated Edge Learning [J]. ZTE Communications, 2020, 18(2): 20-30. |
[11] | ZHANG Pengyu, XIE Lifeng, XU Jie. Joint Placement and Resource Allocation for UAV-Assisted Mobile Edge Computing Networks with URLLC [J]. ZTE Communications, 2020, 18(2): 49-56. |
[12] | FENG Hong, LI Xi, ZHANG Heli, CHEN Shuying, JI Hong. Energy-Efficient Wireless Backhaul Algorithm in Ultra-Dense Networks [J]. ZTE Communications, 2018, 16(2): 16-22. |
[13] | JIN Yaqi, XU Xiaodong, TAO Xiaofeng. Multi-QoS Guaranteed Resource Allocation for Multi-Services Based on Opportunity Costs [J]. ZTE Communications, 2018, 16(2): 9-15. |
[14] | GONG Jie, ZHOU Sheng. Exploiting Correlations of Energy and Information: A New Paradigm of Energy Harvesting Communications [J]. ZTE Communications, 2018, 16(1): 18-25. |
[15] | SUN Yang, CHANG Yongyu, WANG Chao, ZHANG Lu, ZHANG Yu, and WANG Xinhui. Research on Interference Cancellation for Switched-on Small Cells in Ultra Dense Network [J]. ZTE Communications, 2016, 14(S1): 48-53. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 74
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||