ZTE Communications ›› 2021, Vol. 19 ›› Issue (1): 11-19.DOI: 10.12142/ZTECOM.202101003
• Special Topic • Previous Articles Next Articles
JI Hong1(), ZHANG Tianxiang2, ZHANG Kai1, WANG Wanyuan1, WU Weiwei1
Received:
2020-12-09
Online:
2021-03-25
Published:
2021-04-09
About author:
JI Hong (JI Hong, ZHANG Tianxiang, ZHANG Kai, WANG Wanyuan, WU Weiwei. Efficient Network Slicing with Dynamic Resource Allocation[J]. ZTE Communications, 2021, 19(1): 11-19.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202101003
Notation | Description |
---|---|
the set of nodes | |
the set of edges | |
a certain link | |
available bandwidth per link | |
the set of a network | |
the set of flows | |
a certain flow | |
demand of a flow | |
a path the flow | |
set of slices | |
set of flows to be deployed in slice |
Table 1 Notation overview
Notation | Description |
---|---|
the set of nodes | |
the set of edges | |
a certain link | |
available bandwidth per link | |
the set of a network | |
the set of flows | |
a certain flow | |
demand of a flow | |
a path the flow | |
set of slices | |
set of flows to be deployed in slice |
1 |
JEFFREY G A, BUZZI S, CHOI W, et al. What will 5G be? [J]. IEEE Journal on selected areas in communications, 2014, 32(6): 1065. DOI: 10.1109/JSAC.2014.2328098
DOI |
2 |
EINSIEDLER H J, GAVRAS A, SELLSTEDT P, et al. System design for 5G converged networks [C]//2015 European Conference on Networks and Communications. Paris, France: IEEE, 2015: 391–396. DOI:10.1109/EuCNC.2015.7194105
DOI |
3 |
HAWILO H, SHAMI A, MIRAHMADI M, et al. NFV: state of the art, challenges, and implementation in next generation mobile networks [J]. IEEE network, 2014, 28(6): 18–26. DOI:10.1109/MNET.2014.6963800
DOI |
4 |
KARAKUS M, DURRESI A. Quality of service (QoS) in software defined networking (SDN): a survey [J]. Journal of network and computer applications, 2017, 80: 200–218. DOI: 10.1016/j.jnca.2016.12.019
DOI |
5 |
WALLNER R, CANNISTRA R. An SDN approach: quality of service using big switch’s floodlight open⁃source controller [J]. Proceedings of the Asia⁃Pacific advanced network, 2013, 35: 14. DOI:10.7125/APAN.35.2
DOI |
6 |
XU C, CHEN B, QIAN H. Quality of service guaranteed resource management dynamically in software defined network [J]. Journal of communications, 2015: 843–850. DOI:10.12720/jcm.10.11.843-850
DOI |
7 | XU C, GAMAGE S, LU H. vTurbo: accelerating virtual machine I/O processing using designated turbo⁃sliced core [C]//2013 USENIX Annual Technical Conference. San Jose, USA: USENIX, 2013:243–254 |
8 |
SCANO D, VALCARENGHI L, KONDEPU K, et al. Network slicing in SDN networks [C]//2020 22nd International Conference on Transparent Optical Networks (ICTON). Bari, Italy: IEEE, 2020: 1–4. DOI:10.1109/ICTON51198.2020.9203184
DOI |
9 |
ZHU K, HOSSAIN E. Virtualization of 5G cellular networks as a hierarchical combinatorial auction [J]. IEEE transactions on mobile computing, 2016, 15(10): 2640–2654. DOI:10.1109/TMC.2015.2506578
DOI |
10 |
KATSALIS K, NIKAEIN N, SCHILLER E, et al. Network slices toward 5G communications: Slicing the LTE network [J]. IEEE communications magazine, 2017, 55(8): 146–154. DOI:10.1109/MCOM.2017.1600936
DOI |
11 |
BARI M F, BOUTABA R, ESTEVES R, et al. Data center network virtualization: A survey [J]. IEEE communications surveys & tutorials, 2013, 15(2): 909–928.DOI:10.1109/SURV.2012.090512.00043
DOI |
12 |
ZHANG Q X, LIU F M, ZENG C B. Adaptive interference⁃aware VNF placement for service⁃customized 5G network slices [C]//IEEE INFOCOM 2019 IEEE Conference on Computer Communications. Paris, France: IEEE, 2019: 2449–2457. DOI:10.1109/INFOCOM.2019.8737660
DOI |
13 |
CHEN J J, TSAI M H, ZHAO L Q, et al. Realizing dynamic network slice resource management based on SDN networks [C]//2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA). Tainan, Taiwan, China: IEEE, 2019: 120–125. DOI:10.1109/ICEA.2019.8858288
DOI |
14 |
PARSAEEFARD S, JUMBA V, DERAKHSHANI M, et al. Joint resource provisioning and admission control in wireless virtualized networks [C]//2015 IEEE Wireless Communications and Networking Conference. New Orleans, USA: IEEE, 2015: 2020–2025. DOI:10.1109/WCNC.2015.7127778
DOI |
15 |
MONEMI M, RASTI M, HOSSAIN E. Low⁃complexity SINR feasibility checking and joint power and admission control in prioritized multitier cellular networks [J]. IEEE transactions on wireless communications, 2016, 15(3): 2421–2434. DOI:10.1109/TWC.2015.2504084
DOI |
16 | SUTTON R S, BARTO A G. Reinforcement learning: an introduction [M]. Cambridge, UK: MIT Press, 2018 |
17 | SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms [EB/OL]. (2017⁃08⁃28) [2021⁃12⁃09]. |
18 | ESPEHOLT L, SOYER H, MUNOS R, et al. IMPALA: scalable distributed deep⁃RL with importance weighted actor⁃learner architectures [EB/OL]. (2018⁃06⁃28) [2021⁃12⁃09]. |
19 | STOOKE A, ABBEEL P. Accelerated methods for deep reinforcement learning [EB/OL]. (2019⁃12⁃09) [2021⁃01⁃18]. |
20 | MORITZ P, NISHIHARA R, WANG S, et al. Ray: A distributed framework for emerging AI applications [C]//13th USENIX Symposium on Operating Systems Design and Implementation. Carlsbad, USA: OSDI, 2018: 561–577 |
21 | LIANG E, LIAW R, NISHIHARA R, et al. RLLIB: abstractions for distributed reinforcement learning [EB/OL]. (2018⁃07⁃29) [2021⁃12⁃09]. |
22 | LIAW R, LIANG E, NISHIHARA R, et al. Tune: a research platform for distributed model selection and training [EB/OL]. (2018⁃07⁃13) [2021⁃12⁃09]. |
[1] | WEI Zhiqing, ZHANG Yongji, JI Danna, LI Chenfei. Sensing and Communication Integrated Fast Neighbor Discovery for UAV Networks [J]. ZTE Communications, 2024, 22(3): 69-82. |
[2] | SHEN Jiahao, JIANG Ke, TAN Xiaoyang. Boundary Data Augmentation for Offline Reinforcement Learning [J]. ZTE Communications, 2023, 21(3): 29-36. |
[3] | REN Min, XU Renyu, ZHU Ting. Double Deep Q-Network Decoder Based on EEG Brain-Computer Interface [J]. ZTE Communications, 2023, 21(3): 3-10. |
[4] | FENG Bingyi, FENG Mingxiao, WANG Minrui, ZHOU Wengang, LI Houqiang. Multi-Agent Hierarchical Graph Attention Reinforcement Learning for Grid-Aware Energy Management [J]. ZTE Communications, 2023, 21(3): 11-21. |
[5] | YU Junpeng, CHEN Yiyu. A Practical Reinforcement Learning Framework for Automatic Radar Detection [J]. ZTE Communications, 2023, 21(3): 22-28. |
[6] | YOU Qian, XU Qian, YANG Xin, ZHANG Tao, CHEN Ming. RIS-Assisted UAV-D2D Communications Exploiting Deep Reinforcement Learning [J]. ZTE Communications, 2023, 21(2): 61-69. |
[7] | JIA Haonan, HE Zhenqing, TAN Wanlong, RUI Hua, LIN Wei. Distributed Multi-Cell Multi-User MISO Downlink Beamforming via Deep Reinforcement Learning [J]. ZTE Communications, 2022, 20(4): 69-77. |
[8] | ZHANG Jing, WEI Xiao, CHENG Junfeng, FENG Xu. Satellite E2E Network Slicing Based on 5G Technology [J]. ZTE Communications, 2020, 18(4): 26-33. |
[9] | HAN Bin, Hans D. SCHOTTEN. Machine Learning for Network Slicing Resource Management:A Comprehensive Survey [J]. ZTE Communications, 2019, 17(4): 27-32. |
[10] | Stephen ANOKYE, Mohammed SEID, SUN Guolin. A Survey on Machine Learning Based Proactive Caching [J]. ZTE Communications, 2019, 17(4): 46-55. |
[11] | DONG Shaokang, CHEN Jiarui, LIU Yong, BAO Tianyi, GAO Yang. Reinforcement Learning from Algorithm Model to Industry Innovation: A Foundation Stone of Future Artificial Intelligence [J]. ZTE Communications, 2019, 17(3): 31-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||