ZTE Communications ›› 2020, Vol. 18 ›› Issue (2): 49-56.DOI: 10.12142/ZTECOM.202002007
• Special Topic • Previous Articles Next Articles
ZHANG Pengyu1, XIE Lifeng1, XU Jie2()
Received:
2019-04-27
Online:
2020-06-25
Published:
2020-08-07
About author:
ZHANG Pengyu received the B.E. degree from Guangdong University of Technology, China in 2017. He is pursuing his master degree in the School of Information Engineering, Guangdong University of Technology. His research interests include UAV communications, mobile edge computing, and ultra-reliable and low-latency communications.|XIE Lifeng received the B.E. degree from Guangdong University of Technology,China in 2016. He is currently a Ph.D. candidate in the School of Information Engineering, Guangdong University of Technology. His research interests include energy harvesting in wireless communications, wireless information and power transfer, and UAV communications.|XU Jie (Supported by:
ZHANG Pengyu, XIE Lifeng, XU Jie. Joint Placement and Resource Allocation for UAV-Assisted Mobile Edge Computing Networks with URLLC[J]. ZTE Communications, 2020, 18(2): 49-56.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202002007
Figure 1 Unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) network with one UAV acting as an MEC server to serve multiple sensors and actuators on the ground.
1 |
MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the communication perspective [J]. IEEE communications surveys & tutorials, 2017, 19(4): 2322-2358. DOI:10.1109/comst.2017.2745201
DOI |
2 |
DING Z G, XU J, DOBRE O A, et al. Joint power and time allocation for NOMA-MEC offloading [J]. IEEE transactions on vehicular technology, 2019, 68(6): 6207-6211. DOI:10.1109/tvt.2019.2907253
DOI |
3 |
SUN H J, ZHOU F H, HU R Q. Joint offloading and computation energy efficiency maximization in a mobile edge computing system [J]. IEEE transactions on vehicular technology, 2019, 68(9): 3052-3056. DOI:10.1109/tvt.2019.2893094
DOI |
4 |
BAI T, WANG J J, REN Y, et al. Energy⁃efficient computation offloading for secure UAV⁃edge⁃computing systems [J]. IEEE transactions on vehicular technology, 2019, 68(6): 6074-6087. DOI:10.1109/tvt.2019.2912227
DOI |
5 |
WANG F, XU J, DING Z G. Multi⁃antenna NOMA for computation offloading in multiuser mobile edge computing systems [J]. IEEE transactions on communications, 2019, 67(3): 2450-2463. DOI:10.1109/tcomm.2018.2881725
DOI |
6 |
LIU J, MAO Y Y, ZHANG J, et al. Delay⁃optimal computation task scheduling for mobile⁃edge computing systems[C]//2016 IEEE International Symposium on Information Theory. Barcelona, Spain, 2016. DOI:10.1109/isit.2016.7541539
DOI |
7 |
WANG F, XU J, WANG X, et al. Joint offloading and computing optimization in wireless powered mobile⁃edge computing systems [J]. IEEE transactions on wireless communications, 2018, 17 (3): 1784-1797. DOI:10.1109/twc.2017.2785305
DOI |
8 |
ZHU G X, LIU D Z, DU Y Q, et al. Toward an intelligent edge: wireless communication meets machine learning [J]. IEEE communications magazine, 2020, 58(1): 19-25. DOI:10.1109/mcom.001.1900103
DOI |
9 | MO X P, XU J. Energy⁃efficient federated edge learning with joint communication and computation design [EB/OL]. (2020-2-29)[2020-4-1]. |
10 |
CUI Q M, GONG Z Z, NI W, et al. Stochastic online learning for mobile edge computing: learning from changes [J]. IEEE communications magazine, 2019, 57(3): 63-69. DOI:10.1109/mcom.2019.1800644
DOI |
11 |
MOTLAGH N H, BAGAA M, TALEB T. UAV⁃Based IoT Platform: a crowd surveillance use case [J]. IEEE Communications Magazine, 2017, 55(2): 128-134. DOI:10.1109/mcom.2017.1600587cm
DOI |
12 |
ZENG Y, XU J, ZHANG R. Energy minimization for wireless communication with rotary⁃wing UAV [J]. IEEE transactions on wireless communications, 2019, 18(4): 2329-2345. DOI:10.1109/twc.2019.2902559
DOI |
13 |
CAO X W, WANG F, XU J, et al. Joint computation and communication cooperation for energy⁃efficient mobile edge computing [J]. IEEE Internet of Things journal, 2019, 6(3): 4188-4200. DOI:10.1109/jiot.2018.2875246
DOI |
14 |
ZENG Y, ZHANG R, LIM T J. Wireless communications with unmanned aerial vehicles: opportunities and challenges [J]. IEEE communications magazine, 2016, 54(5): 36-42. DOI:10.1109/mcom.2016.7470933
DOI |
15 |
ZENG Y, ZHANG R, LIM T J. Throughput maximization for UAV⁃enabled mobile relaying systems [J]. IEEE transactions on communications, 2016, 64(12): 4983-4996. DOI:10.1109/tcomm.2016.2611512
DOI |
16 |
XU J, ZENG Y, ZHANG R. UAV⁃enabled wireless power transfer: trajectory design and energy optimization [J]. IEEE transactions on wireless communications, 2018, 17(8): 5092-5106. DOI:10.1109/twc.2018.2838134
DOI |
17 |
WU Q Q, ZENG Y, ZHANG R. Joint trajectory and communication design for multi⁃UAV enabled wireless networks [J]. IEEE transactions on wireless communications, 2018, 17(3): 2109-2121. DOI:10.1109/twc.2017.2789293
DOI |
18 |
XIE L F, XU J, ZHANG R. Throughput maximization for UAV⁃enabled wireless powered communication networks [J]. IEEE Internet of Things journal, 2019, 6(2): 1690-1703. DOI:10.1109/jiot.2018.2875446
DOI |
19 |
ZHOU F, WU Y, HU R Q, QIAN Y. Computation rate maximization in UAV⁃enabled wireless powered mobile⁃edge computing systems [J]. IEEE journal on selected areas in communications, 2018, 36(9): 1927-1941. DOI: 10.1109/JSAC.2018.2864426A
DOI |
20 |
GARG S, SINGH A, BATRA S, et al. UAV⁃empowered edge computing environment for cyber⁃threat detection in smart vehicles [J]. IEEE network, 2018, 32(3): 42-51. DOI:10.1109/mnet.2018.1700286
DOI |
21 |
PU L J, CHEN X, MAO G Q, et al. Chimera: an energy⁃efficient and deadline⁃aware hybrid edge computing framework for vehicular crowdsensing applications [J]. IEEE Internet of Things journal, 2019, 6(1): 84-99. DOI:10.1109/jiot.2018.2872436
DOI |
22 |
DU Y, WANG K Z, YANG K, et al. Energy⁃efficient resource allocation in UAV based MEC system for IoT devices [C]//2018 IEEE Global Communications Conference (GLOBECOM). Abu Dhabi, United Arab Emirates, 2018: 9-13. DOI:10.1109/glocom.2018.8647789
DOI |
23 |
JEONG S, SIMEONE O, KANG J. Mobile edge computing via a UAV⁃mounted cloudlet: optimization of bit allocation and path planning [J]. IEEE transactions on vehicular technology, 2018, 67(3): 2049-2063. DOI:10.1109/tvt.2017.2706308
DOI |
24 |
ZHOU F H, WU Y P, SUN H J, et al. UAV⁃enabled mobile edge computing: offloading optimization and trajectory design [C]//2018 IEEE International Conference On Communications (ICC). Kansas City, USA, 2018: 20-24. DOI:10.1109/icc.2018.8422277
DOI |
25 |
DURISI G, KOCH T, POPOVSKI P. Toward massive, ultrareliable, and low⁃latency wireless communication with short packets [J]. Proceedings of the IEEE, 2016, 104(9): 1711-1726. DOI:10.1109/jproc.2016.2537298
DOI |
26 |
SHEN C, CHANG T H, XU H Q, et al. Joint uplink and downlink transmission design for URLLC using finite blocklength codes [C]//2018 15th International Symposium on Wireless Communication Systems (ISWCS). Lisbon, Portugal, 2018: 28-31. DOI:10.1109/iswcs.2018.8491069
DOI |
27 |
PAN C H, REN H, DENG Y S, et al. Joint blocklength and location optimization for URLLC⁃enabled UAV relay systems [J]. IEEE communications letters, 2019, 23(3): 498-501. DOI:10.1109/lcomm.2019.2894696
DOI |
28 |
BOYD S, VANDENBERGHE L. Convex optimization [M]. Cambridge, U.K: Cambridge University Press, 2004. DOI:10.1017/cbo9780511804441
DOI |
29 | BOYD S. Convex optimization II [EB/OL]. (2013⁃09⁃11)[2019⁃10⁃20]. |
[1] | ZHAO Yaqiong, KE Hongqin, XU Wei, YE Xinquan, CHEN Yijian. RIS-Assisted Cell-Free MIMO: A Survey [J]. ZTE Communications, 2024, 22(1): 77-86. |
[2] | LI Daiyi, TU Yaofeng, ZHOU Xiangsheng, ZHANG Yangming, MA Zongmin. End-to-End Chinese Entity Recognition Based on BERT-BiLSTM-ATT-CRF [J]. ZTE Communications, 2022, 20(S1): 27-35. |
[3] | XU Yongjun, YANG Zhaohui, HUANG Chongwen, YUEN Chau, GUI Guan. Resource Allocation for Two‑Tier RIS‑Assisted Heterogeneous NOMA Networks [J]. ZTE Communications, 2022, 20(1): 36-47. |
[4] | XIAO Kai, LIU Xing, HAN Xianghui, HAO Peng, ZHANG Junfeng, ZHOU Dong, WEI Xingguang. Flexible Multiplexing Mechanism for Coexistence of URLLC and EMBB Services in 5G Networks [J]. ZTE Communications, 2021, 19(2): 82-90. |
[5] | JI Hong, ZHANG Tianxiang, ZHANG Kai, WANG Wanyuan, WU Weiwei. Efficient Network Slicing with Dynamic Resource Allocation [J]. ZTE Communications, 2021, 19(1): 11-19. |
[6] | DENG Xu, ZHU Lidong. Resource Allocation Strategy Based on Matching Game [J]. ZTE Communications, 2020, 18(4): 10-17. |
[7] | JIANG Zhihui, HE Yinghui, YU Guanding. Joint User Selection and Resource Allocation for Fast Federated Edge Learning [J]. ZTE Communications, 2020, 18(2): 20-30. |
[8] | WU Hequan. Ten Reflections on 5G [J]. ZTE Communications, 2020, 18(1): 1-4. |
[9] | XU Kun, FAN Guotian, ZHOU Yi, ZHAN Haisheng, GUO Zongyi. Antenna Mechanical Pose Measurement Based on Structure from Motion [J]. ZTE Communications, 2018, 16(4): 38-45. |
[10] | JIN Yaqi, XU Xiaodong, TAO Xiaofeng. Multi-QoS Guaranteed Resource Allocation for Multi-Services Based on Opportunity Costs [J]. ZTE Communications, 2018, 16(2): 9-15. |
[11] | GONG Jie, ZHOU Sheng. Exploiting Correlations of Energy and Information: A New Paradigm of Energy Harvesting Communications [J]. ZTE Communications, 2018, 16(1): 18-25. |
[12] | Mohsin Raza, Sajjad Hussain, Hoa Le-Minh, Nauman Aslam. Novel MAC Layer Proposal for URLLC in Industrial Wireless Sensor Networks [J]. ZTE Communications, 2017, 15(S1): 50-59. |
[13] | XU Xiaoqiong, YU Hongfang, YANG Kun. DDoS Attack in Software Defined Networks: A Survey [J]. ZTE Communications, 2017, 15(3): 13-19. |
[14] | LI Bing, ZHANG Yunyong, XU Lei. An MEC and NFV Integrated Network Architecture [J]. ZTE Communications, 2017, 15(2): 19-25. |
[15] | SUN Yang, CHANG Yongyu, WANG Chao, ZHANG Lu, ZHANG Yu, and WANG Xinhui. Research on Interference Cancellation for Switched-on Small Cells in Ultra Dense Network [J]. ZTE Communications, 2016, 14(S1): 48-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||