ZTE Communications ›› 2018, Vol. 16 ›› Issue (4): 38-45.doi: 10.19729/j.cnki.1673-5188.2018.04.006
• Research Paper • Previous Articles Next Articles
XU Kun1, FAN Guotian1, ZHOU Yi1, ZHAN Haisheng2, GUO Zongyi2
Received:
2017-12-31
Online:
2018-12-31
Published:
2020-04-28
About author:
XU Kun (xu.Supported by:
XU Kun, FAN Guotian, ZHOU Yi, ZHAN Haisheng, GUO Zongyi. Antenna Mechanical Pose Measurement Based on Structure from Motion[J]. ZTE Communications, 2018, 16(4): 38-45.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Experiment results based on the indoor antenna dataset: the values of downtilt"
True value (°) | 0d | 2d | 3d | Error average (°) | ||||
---|---|---|---|---|---|---|---|---|
T | H | Result (°) | Error (°) | Result (°) | Error (°) | Result (°) | Error (°) | |
3 | 316 | 2.824 | 0.176 | 2.643 | 0.357 | 2.689 | 0.311 | 0.281 |
317 | 5.982 | 0.018 | 5.574 | 0.426 | 5.774 | 0.226 | 0.223 | |
9 | 318 | 8.550 | 0.450 | 8.489 | 0.511 | 8.484 | 0.516 | 0.492 |
12 | 318 | 11.975 | 0.025 | 12.188 | 0.188 | 12.507 | 0.507 | 0.240 |
15 | 320 | 14.872 | 0.129 | 14.663 | 0.337 | 14.157 | 0.844 | 0.436 |
Table 2
Experiment results based on the indoor antenna dataset: the values of heading"
True value (°) | 0d | 2d | 3d | Average error (°) | ||||
---|---|---|---|---|---|---|---|---|
T | H | Result (°) | Error (°) | Result (°) | Error (°) | Result (°) | Error (°) | |
3 | 316 | 314.513 | 1.487 | 311.253 | 4.747 | 311.090 | 4.910 | 3.715 |
317 | 314.542 | 2.458 | 314.007 | 2.993 | 314.907 | 2.093 | 2.514 | |
9 | 318 | 314.060 | 3.940 | 316.146 | 1.854 | 316.404 | 1.596 | 2.463 |
12 | 318 | 316.468 | 1.532 | 318.755 | 0.755 | 322.213 | 4.213 | 2.167 |
15 | 320 | 319.239 | 0.761 | 319.947 | 0.053 | 316.660 | 3.340 | 1.385 |
Table 3
Results of the outdoor antenna dataset"
Short-distance | ||||||||
---|---|---|---|---|---|---|---|---|
Distance (m) | Downtilt | Heading | Longitude result | Latitude result | GPS error | Altitude | ||
Result (°) | Error (°) | Result (°) | Error (°) | |||||
4 | 11.317 | 0.317 | 178.509 | 1.491 | 108.827724 | 34.098129 | 0.805 | 416.767 |
6 | 11.623 | 0.623 | 178.993 | 1.007 | 108.827728 | 34.098129 | 3.173 | 414.408 |
8 | 11.389 | 0.389 | 178.774 | 1.226 | 108.827733 | 34.098131 | 2.423 | 418.637 |
10 | 11.910 | 0.910 | 181.284 | 1.284 | 108.827735 | 34.098137 | 2.587 | 410.937 |
12 | 11.101 | 0.101 | 179.571 | 0.429 | 108.827734 | 34.098138 | 1.957 | 406.251 |
14 | 11.159 | 0.159 | 181.577 | 1.577 | 108.827746 | 34.098133 | 4.506 | 406.005 |
16 | 11.239 | 0.239 | 183.794 | 3.794 | 108.827755 | 34.098147 | 2.587 | 406.087 |
18 | 11.388 | 0.388 | 184.699 | 4.699 | 108.827742 | 34.098126 | 5.106 | 407.377 |
20 | 11.606 | 0.606 | 182.926 | 2.926 | 108.827710 | 34.098130 | 4.717 | 411.204 |
22 | 11.332 | 0.332 | 178.411 | 1.589 | 108.827735 | 34.098135 | 3.958 | 415.548 |
24 | 11.534 | 0.534 | 176.466 | 3.534 | 108.827697 | 34.098118 | 3.518 | 407.194 |
26 | 11.631 | 0.631 | 177.724 | 2.276 | 108.827716 | 34.098181 | 4.120 | 416.653 |
28 | 11.517 | 0.517 | 175.148 | 4.852 | 108.827734 | 34.098174 | 4.356 | 407.903 |
30 | 11.673 | 0.673 | 183.964 | 3.964 | 108.827747 | 34.098168 | 5.170 | 416.767 |
[1] | 3Z. (2017, Apr. 10). Antenna alignment tool [Online]. Available: . (2017, Apr. 10). Antenna alignment tool [Online]. Available: |
[2] | N. Snavely, S. M. Seitz,R. Szeliski, “Photo tourism: exploring photo collections in 3D,” ACM Transactions on Graphics (SIGGRAPH Proceedings), vol. 25, no. 3, pp. 835-846, Jul. 2006. doi: 10.1145/1141911.1141964. |
[3] | D. G. Lowe,“Object recognition from local scale-invariant features,” in International Conference on Computer Vision (ICCV), Corfu, Greece, Sept. 1999, pp. 1150-1157. doi:10.1109/ICCV.1999.790410. |
[4] | M. A.Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381-395, Jun. 1981. doi: 10.1145/358669.358692. |
[5] | R. Hartley, J. Trumpf, Y. Dai, et al, “Rotation averaging,” International Journal of Computer Vision (IJCV), vol. 103, no. 3, pp. 267-305, Jan. 2013. doi: 10.1007/s11263-012-0601-0. |
[6] | M. Arie-Nachimson, S. Z. Kovalsky, I. Kemelmacher-Shlizerman, et al, “Global motion estimation from point matches,” in Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, Oct.2012, Zurich, Switzerland, pp. 81-88. doi: 10.1109/3DIMPVT.2012.46. |
[7] | M. Brand, M. Antone,S. Teller,“Spectral solution of large-scale extrinsic camera calibration as a graph embedding problem,” in European Conference on Computer Vision (ECCV), Berlin, Germany, Jul. 2004, pp. 262-273. doi: 10.1007/978-3-540-24671-8_21. |
[8] | C. Schmid, R. Mohr,C. Bauckhage, “Evaluation of interest point detectors,” International Journal of Computer Vision (IJCV), vol. 37, no. 2, pp. 151-172, Jun. 2000. doi: 10.1023/A:1008199403446. |
[9] | J. Courchay, A. Dalalyan, R. Keriven, et al,“Exploiting loops in the graph of trifocal tensors for calibrating a network of cameras,” in European Conference on Computer Vision (ECCV), Heraklion, Greece, Sept. 2010, pp. 85-99. doi: 10.1007/978-3-642-15552-9_7. |
[10] | K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Quarterly of Applied Mathematics, vol. 2, no. 2, pp. 164-168, Jul. 1944. |
[11] | D. H. Ballard, “Generalizing the hough transform to detect arbitrary shapes,” Pattern Recognition, vol. 13, no. 2, pp. 111-122, Dec. 1981. doi: 10.1016/0031-3203(81)90009-1. |
[12] | J. Matas, C. Galambos,J. Kittler, “Robust detection of lines using the progressive probabilistic hough transform,” Computer Vision and Image Understanding (CVIU), vol. 78, no. 1, pp. 119-137, Apr. 2000. doi: 10.1006/cviu.1999.0831. |
[13] | C. Galambos, J. Kittler,J. Matas, “Gradient based progressive probabilistic Hough transform,” IEEE Proceedings-Vision, Image and Signal Processing, vol. 148, no. 3, pp. 158-165, Aug. 2002. doi: 10.1049/ip-vis:20010354. |
[14] | R. G. V.Gioi, J. Jakubowicz, J. M. Morel, et al, “LSD: a fast line segment detector with a false detection control,” IEEE Transactions on Pattern Analysis & Machine Intelligence (PAMI), vol. 32, no. 4, pp. 722-732, Dec. 2010. doi: 10.1109/TPAMI.2008.300. |
[15] | R. G.V. Gioi, J. Jakubowicz, J. M. Morel, et al, “LSD: a line segment detector,” Image Processing on Line, no. 2, pp. 35-55, Mar. 2012. doi: 10.5201/ipol.2012.gjmr-lsd. |
[16] | A. M. Andrew, “Multiple View Geometry in Computer Vision,”Kybernetes, vol. 30, no. 9/10, pp.1333-1341, Dec.2001.10.1108/k.2001.30.9_10.1333.2. |
[17] | D. Matinec and T. Pajdla, “Line reconstruction from many perspective images by factorization,” in IEEE Computer Society Conference on Computer Vision & Pattern Recognition (PAMI), Madison, USA, Jul. 2003, pp. 497-502. doi: 10.1109/CVPR.2003.1211395. |
[18] | R. I. Hartley and P. Sturm, “ Triangulation,” in International Conference on Computer Analysis of Images and Patterns, Jun.2001, Warsaw, Poland, pp. 146-157. doi: 10.1007/3-540-60268-2_296. |
[1] | Bo Zhao, Zhi Xu, Caixia Chi, Sencun Zhu, and Guohong Cao. Mirroring Smartphones for Good: A Feasibility Study [J]. ZTE Communications, 2011, 9(1): 9-14. |
[2] | Shih-Hao Hung, Tei-Wei Kuo, Chi-Sheng Shih, Jeng-Peng Shieh, Chen-Pang Lee, Che-Wei Chang, and Jie-Wen Wei. A Cloud-Based Virtualized Execution Environment for Mobile Applications [J]. ZTE Communications, 2011, 9(1): 15-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||