ZTE Communications ›› 2022, Vol. 20 ›› Issue (2): 3-12.DOI: 10.12142/ZTECOM.202202002
• Special Topic • Previous Articles Next Articles
YANG Bo1(), MITANI Tomohiko1, SHINOHARA Naoki1, ZHANG Huaiqing2
Received:
2022-04-18
Online:
2022-06-25
Published:
2022-05-24
About author:
YANG Bo (Supported by:
YANG Bo, MITANI Tomohiko, SHINOHARA Naoki, ZHANG Huaiqing. High-Power Simultaneous Wireless Information and Power Transfer: Injection-Locked Magnetron Technology[J]. ZTE Communications, 2022, 20(2): 3-12.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202202002
Injection signal (signal generator & amplifier) | Magnetron output | ||||||||
---|---|---|---|---|---|---|---|---|---|
Type | Data rate | EVM/% | MAG Err/% | Phase Err/deg | Freq Err/Hz | EVM/% | MAG Err/% | Phase Err/deg | Freq Err/Hz |
ASK | 200 kbit/s | 1.74 | 1.48 | 0.540 4 | 3 489.5 | 2.29 | 0.49 | 1.307 4 | 3 708.7 |
BPSK | 10 Mbit/s | 4.24 | 4.02 | 0.776 3 | 78.137 | 8.85 | 8.33 | 1.704 8 | 3 397.1 |
QPSK | 10 Mbit/s | 5.29 | 4.10 | 1.933 7 | 3.606 8 | 9.21 | 7.17 | 3.277 6 | -18.842 |
8PSK | 5 Mbit/s | 5.62 | 4.06 | 2.254 2 | 41.388 | 11.37 | 6.36 | 5.457 7 | 78.593 |
MSK | 10 Mbit/s | 3.03 | 0.91 | 3.652 5 | 3.326 9 | 6.56 | 3.02 | 2.885 8 | 30.079 |
Type | Data rate/(Mbit/s) | FSK Err/% | MAG Err/% | CF offset/kHz | Freq DEV/Hz | FSK Err/% | MAG Err/% | CF Offset/kHz | Freq DEV/Hz |
2 FSK | 10 | 2.61 | 0.83 | 1.731 3 | 975.96 | 6.38 | 8.12 | 0.1730 | 928.88 |
4 FSK | 10 | 2.22 | 0.75 | -2.411 6 | 972.16 | 5.13 | 0.64 | 2.913 8 | 929.53 |
8 FSK | 5 | 0.78 | 0.78 | 0.175 17 | 993.53 | 1.45 | 0.62 | 0.263 6 | 981.90 |
16 FSK | 10 | 2.09 | 0.65 | 0.661 01 | 976.22 | 4.20 | 0.61 | 10.662 | 1 025.4 |
Table 1 Parameters measured in injection-locked magnetron experiments[19]
Injection signal (signal generator & amplifier) | Magnetron output | ||||||||
---|---|---|---|---|---|---|---|---|---|
Type | Data rate | EVM/% | MAG Err/% | Phase Err/deg | Freq Err/Hz | EVM/% | MAG Err/% | Phase Err/deg | Freq Err/Hz |
ASK | 200 kbit/s | 1.74 | 1.48 | 0.540 4 | 3 489.5 | 2.29 | 0.49 | 1.307 4 | 3 708.7 |
BPSK | 10 Mbit/s | 4.24 | 4.02 | 0.776 3 | 78.137 | 8.85 | 8.33 | 1.704 8 | 3 397.1 |
QPSK | 10 Mbit/s | 5.29 | 4.10 | 1.933 7 | 3.606 8 | 9.21 | 7.17 | 3.277 6 | -18.842 |
8PSK | 5 Mbit/s | 5.62 | 4.06 | 2.254 2 | 41.388 | 11.37 | 6.36 | 5.457 7 | 78.593 |
MSK | 10 Mbit/s | 3.03 | 0.91 | 3.652 5 | 3.326 9 | 6.56 | 3.02 | 2.885 8 | 30.079 |
Type | Data rate/(Mbit/s) | FSK Err/% | MAG Err/% | CF offset/kHz | Freq DEV/Hz | FSK Err/% | MAG Err/% | CF Offset/kHz | Freq DEV/Hz |
2 FSK | 10 | 2.61 | 0.83 | 1.731 3 | 975.96 | 6.38 | 8.12 | 0.1730 | 928.88 |
4 FSK | 10 | 2.22 | 0.75 | -2.411 6 | 972.16 | 5.13 | 0.64 | 2.913 8 | 929.53 |
8 FSK | 5 | 0.78 | 0.78 | 0.175 17 | 993.53 | 1.45 | 0.62 | 0.263 6 | 981.90 |
16 FSK | 10 | 2.09 | 0.65 | 0.661 01 | 976.22 | 4.20 | 0.61 | 10.662 | 1 025.4 |
Figure 4 Audio signal and demodulated signal obtained from a phase-modulated (PM) signal transmitted by the injection-locked magnetron (without filter)
Figure 5 Schematic of simultaneous wireless information and power transfer (SWIPT) used in an injection-locked magnetron to control an electric trolley[32]
Parameter | Value |
---|---|
Magnetron | 2M236-M42 (Panasonic) |
Anode current | 140 mA |
Anode voltage | -3.68 kV (DC) |
Filament current | 7.4 A |
Filament voltage | 3.35 V (AC 60Hz) |
Injected power | 10 W |
Output frequency | 2.448–2.450 GHz |
Output power | 329 W (RF) |
Rectified power | 48 W (DC) |
Modulation | Frequency, modulation |
Transmitter antenna | Gain 16 dBi (SPC) |
TV | LL-M1550A (Sharp) |
Table 2 Parameters of wirelessly powered TV[20]
Parameter | Value |
---|---|
Magnetron | 2M236-M42 (Panasonic) |
Anode current | 140 mA |
Anode voltage | -3.68 kV (DC) |
Filament current | 7.4 A |
Filament voltage | 3.35 V (AC 60Hz) |
Injected power | 10 W |
Output frequency | 2.448–2.450 GHz |
Output power | 329 W (RF) |
Rectified power | 48 W (DC) |
Modulation | Frequency, modulation |
Transmitter antenna | Gain 16 dBi (SPC) |
TV | LL-M1550A (Sharp) |
1 |
KRIKIDIS I, TIMOTHEOU S, NIKOLAOU S, et al. Simultaneous wireless information and power transfer in modern communication systems [J]. IEEE communications magazine, 2014, 52(11): 104–110. DOI: 10.1109/MCOM.2014.6957150
DOI |
2 |
BOYD J. Here comes the wallet phone [wireless credit card] [J]. IEEE spectrum, 2005, 42(11): 12–14. DOI: 10.1109/MSPEC.2005.1526896
DOI |
3 |
COSKUN V, OZDENIZCI B, OK K, et al. NFC loyal system on the cloud [C]//7th International Conference on Application of Information and Communication Technologies. IEEE, 2013: 1–5. DOI: 10.1109/ICAICT.2013.6722637
DOI |
4 |
KIM J, KIM D H, PARK Y J. Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices [J]. IEEE transactions on industrial electronics, 2015, 62(5): 2807–2813. DOI: 10.1109/TIE.2014.2365751
DOI |
5 |
DAI J J, LUDOIS D C. A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications [J]. IEEE transactions on power electronics, 2015, 30(11): 6017–6029. DOI: 10.1109/TPEL.2015.2415253
DOI |
6 |
BOU-BALUST E, HU A P, ALARCON E. Scalability analysis of SIMO non-radiative resonant wireless power transfer systems based on circuit models [J]. IEEE transactions on circuits and systems I: Regular papers, 2015, 62(10): 2574–2583. DOI: 10.1109/TCSI.2015.2469015
DOI |
7 |
CHABALKO M, BESNOFF J, LAIFENFELD M, et al. Resonantly coupled wireless power transfer for non-stationary loads with application in automotive environments [J]. IEEE transactions on industrial electronics, 2017, 64(1): 91–103. DOI: 10.1109/TIE.2016.2609379
DOI |
8 |
ZHANG R, HO C K. MIMO broadcasting for simultaneous wireless information and power transfer [J]. IEEE transactions on wireless communications, 2013, 12(5): 1989–2001. DOI: 10.1109/TWC.2013.031813.120224
DOI |
9 |
DING Z G, ZHONG C J, WING KWAN NG D, et al. Application of smart antenna technologies in simultaneous wireless information and power transfer [J]. IEEE communications magazine, 2015, 53(4): 86–93. DOI: 10.1109/MCOM.2015.7081080
DOI |
10 |
CHOI K W, HWANG S I, AZIZ A A, et al. Simultaneous wireless information and power transfer (SWIPT) for Internet of Things: novel receiver design and experimental validation [J]. IEEE Internet of Things journal, 2020, 7(4): 2996–3012. DOI: 10.1109/JIOT.2020.2964302
DOI |
11 |
GOLAM M, IGBOANUSI I S, LEE J M, et al. Reliable communication using orbital angular momentum with SWIPT for military networks [C]//International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2019: 636–638. DOI: 10.1109/ICTC46691.2019.8939759
DOI |
12 |
MASE M, SHINOHARA N, MITANI T, et al. Evaluation of efficiency and isolation in wireless power transmission using orbital angular momentum modes [C]//IEEE Wireless Power Transfer Conference. IEEE, 2021: 1–4. DOI: 10.1109/WPTC51349.2021.9458043
DOI |
13 |
SHINOHARA N. Wireless power transfer in Japan: Regulations and activities [C]//14th European Conference on Antennas and Propagation (EuCAP). IEEE, 2020: 1–4. DOI: 10.23919/EuCAP48036.2020.9135422
DOI |
14 |
SHINOHARA N. History and innovation of wireless power transfer via microwaves [J]. IEEE journal of microwaves, 2021, 1(1): 218–228. DOI: 10.1109/JMW.2020.3030896
DOI |
15 | Energous. Energous receives FCC approval, extending charging zone to up to 1 meter for groundbreaking over-the-air, power-at-a-distance wireless charging [EB/OL]. [2021-12-10]. |
16 | Global Banking & Finance Review. Ossia receives FCC authorization for its next generation platform for wireless power at a distance [EB/OL]. [2021-12-10]. |
17 |
YANG B, MITANI T, SHINOHARA N. Experimental study on a 5.8 GHz power-variable phase-controlled magnetron [J]. IEICE transactions on electronics, 2017, E100.C(10): 901–907. DOI: 10.1587/transele.e100.c.901
DOI |
18 |
TAHIR I, DEXTER A, CARTER R. Frequency and phase modulation performance of an injection-locked CW magnetron [J]. IEEE transactions on electron devices, 2006, 53(7): 1721–1729. DOI: 10.1109/TED.2006.876268
DOI |
19 |
YANG B, MITANI T, SHINOHARA N. Evaluation of the modulation performance of injection-locked continuous-wave magnetrons [J]. IEEE transactions on electron devices, 2019, 66(1): 709–715. DOI: 10.1109/TED.2018.2877204
DOI |
20 |
YANG B, MITANI T, SHINOHARA N. Injection-locked CW magnetron for a wirelessly-powered TV [C]//International Vacuum Electronics Conference (IVEC). IEEE, 2019: 1–2. DOI: 10.1109/IVEC.2019.8745010
DOI |
21 |
SHINOHARA N, MATSUMOTO H, HASHIMOTO K. Phase-controlled magnetron development for SPORTS: space power radio transmission system [J]. URSI radio science bulletin, 2004, 2004(310): 29–35. DOI: 10.23919/URSIRSB.2004.7909435
DOI |
22 | SHINOHARA N, MITANI T, MATSUMOTO H. Development of phase and amplitude controlled magnetron [C]//6th International Vacuum Electronics Conference (IVEC). IEEE, 2005: 61–65 |
23 | BROWN W C. The high signal to noise ratio of the microwave oven magnetron and evidence of a negative feedback loop to control it [C]//1st International Workshop Crossed-Field Devices. Defense Technical Information Center, 1995: 178–187 |
24 | BROWN W C. Update on the solar power satellite transmitter design [J]. Space power, 1984, 6(2): 123–135 |
25 |
YANG B, CHEN X J, CHU J, et al. A 5.8-GHz phased array system using power-variable phase-controlled magnetrons for wireless power transfer [J]. IEEE transactions on microwave theory and techniques, 2020, 68(11): 4951–4959. DOI: 10.1109/TMTT.2020.3007187
DOI |
26 |
MITANI T, SHINOHARA N, MATSUMOTO H. Development of a pulse-driven phase-controlled magnetron [C]//IEEE International Vacuum Electronics Conference. IEEE, 2007: 1–2. DOI: 10.1109/IVELEC.2007.4283396
DOI |
27 |
ADLER R. A study of locking phenomena in oscillators [J]. Proceedings of the IEEE, 1973, 61(10): 1380–1385. DOI: 10.1109/PROC.1973.9292
DOI |
28 | Japan Electronics and Information Technology Industries Association Electrotube History Study Group. History of electron tubes: the origin of electronics (in Japanese) [M]. Tokyo, Japan: Ohmsha, 1987: 166–169 |
29 |
WEGLEIN R D, LEACH H A. The noise behavior of an injection-locked magnetron reflection amplifier [C]//IEEE MTT-S International Microwave Symposium Digest. IEEE, 1987: 261–264. DOI: 10.1109/MWSYM.1987.1132379
DOI |
30 |
TAHIR I, DEXTER A, CARTER R. Noise performance of frequency- and phase-locked CW magnetrons operated as current-controlled oscillators [J]. IEEE transactions on electron devices, 2005, 52(9): 2096–2103. DOI: 10.1109/TED.2005.854276
DOI |
31 |
READ M, IVES R L, BUI T, et al. A 100-kW 1300-MHz magnetron with amplitude and phase control for accelerators [J]. IEEE transactions on plasma science, 2019, 47(9): 4268–4273. DOI: 10.1109/TPS.2019.2932264
DOI |
32 |
YANG B, MITANI T, SHINOHARA N. Study on a 5.8GHz injection-locked magnetron for transferring data [C]//31st International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2018: 1–2. DOI: 10.1109/IVNC.2018.8520193
DOI |
33 | MITANI T, SHINOHARA N, MATSUMOTO H, et al. Improvement of spurious noises generated from magnetrons driven by DC power supply after turning off filament current [J]. IEICE transactions on electron, 2003, E86-C(8): 1556–1563 |
34 |
YANG B, CHU J, MITANI T, et al. High-power simultaneous wireless information and power transfer system based on an injection-locked magnetron phased array [J]. IEEE microwave and wireless components letters, 2021, 31(12): 1327–1330. DOI: 10.1109/LMWC.2021.3104832
DOI |
[1] | LI Yuting, DING Yi, GAO Jiangchuan, LIU Yusha, HU Jie, YANG Kun. UAV Autonomous Navigation for Wireless Powered Data Collection with Onboard Deep Q-Network [J]. ZTE Communications, 2023, 21(2): 80-87. |
[2] | CUI Ziqi, WANG Gongpu, WANG Zhigang, AI Bo, XIAO Huahua. Symbiotic Radio Systems: Detection and Performance Analysis [J]. ZTE Communications, 2022, 20(3): 93-98. |
[3] | CHANG Mingyang, HAN Jiaqi, MA Xiangjin, XUE Hao, WU Xiaonan, LI Long, CUI Tiejun. Programmable Metasurface for Simultaneously Wireless Information and Power Transfer System [J]. ZTE Communications, 2022, 20(2): 48-62. |
[4] | ZHAO Kongyange, GAO Bin, ZHOU Zhi. Cost-Effective Task Scheduling for Collaborative Cross-Edge Analytics [J]. ZTE Communications, 2021, 19(2): 11-19. |
[5] | TAN Jie, SHA Xiubin, DAI Bo, LU Ting. Analysis of Industrial Internet of Things and Digital Twins [J]. ZTE Communications, 2021, 19(2): 53-60. |
[6] | LIANG Junrui, LI Xin, YANG Hailiang. Kinetic Energy Harvesting Toward Battery-Free IoT: Fundamentals, Co-Design Necessity and Prospects [J]. ZTE Communications, 2021, 19(1): 48-60. |
[7] | ZHANG Gengxin, DING Xiaojin, QU Zhicheng. Space‑Terrestrial Integrated Architecture for Internet of Things [J]. ZTE Communications, 2020, 18(4): 3-9. |
[8] | FU Shousai, ZHANG Hesheng, CHEN Jinghe. Time Sensitive Networking Technology Overview and Performance Analysis [J]. ZTE Communications, 2018, 16(4): 57-64. |
[9] | Mahyar Shirvanimoghaddam, Sarah J. Johnson. Multiple Access Technologies for Cellular M 2M Communications [J]. ZTE Communications, 2016, 14(4): 42-49. |
[10] | Christian Jacquenet, Mohamed Boucadair. A Software-Defined Approach to IoT Networking [J]. ZTE Communications, 2016, 14(1): 61-68. |
[11] | Somayya Madakam, Ramaswamy Ramachandran. Barcelona Smart City: The Heaven on Earth (Internet of Things: Technological God) [J]. ZTE Communications, 2015, 13(4): 3-9. |
[12] | Didier El Baz, Julien Bourgeois. Smart Cities in Europe and the ALMA Logistics Project [J]. ZTE Communications, 2015, 13(4): 10-15. |
[13] | Jie Li, Eitan Altman, Corinne Touati. A General SDN-Based IoT Framework with NVF Implementation [J]. ZTE Communications, 2015, 13(3): 42-45. |
[14] | Xuemeng Li, Yongyi Wang, Fan Shi, Wenchao Jia. Crawler for Nodes in the Internet of Things [J]. ZTE Communications, 2015, 13(3): 46-50. |
[15] | Fuji Ren, Yu Gu. Using Artificial Intelligence in the Internet of Things [J]. ZTE Communications, 2015, 13(2): 1-2. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||