ZTE Communications ›› 2021, Vol. 19 ›› Issue (2): 11-19.DOI: 10.12142/ZTECOM.202102003
• Special Topic • Previous Articles Next Articles
ZHAO Kongyange1, GAO Bin2, ZHOU Zhi1()
Received:
2021-04-09
Online:
2021-06-25
Published:
2021-07-27
About author:
ZHAO Kongyange received the B.E. degree from the South China University of Technology, China in 2020. He is currently pursuing his master’s degree in Sun Yat-sen University, China. His research interests include edge computing, edge intelligence, and serverless computing.|GAO Bin is now a research assistant of School of Computing in National University of Singapore (NUS). Before this, he received the master’s degree and bachelor’s degree from Huazhong University of Science and Technology (HUST), China in 2017 and 2020, respectively. His research interests include operation system, mobile edge computing, cloud computing, and geo-distributed data analytics.|ZHOU Zhi (Supported by:
ZHAO Kongyange, GAO Bin, ZHOU Zhi. Cost-Effective Task Scheduling for Collaborative Cross-Edge Analytics[J]. ZTE Communications, 2021, 19(2): 11-19.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202102003
Location | Price |
---|---|
Frankfurt | 0.02 |
Iceland | 0.02 |
London | 0.02 |
Northern California | 0.02 |
Northern Virginia | 0.02 |
Ontario | 0.02 |
Oregon | 0.02 |
Tokyo | 0.02 |
Mumbai | 0.086 |
Seoul | 0.09 |
Singapore | 0.09 |
Sydney | 0.09 |
Sao Paulo | 0.16 |
Table 1 Price heterogeneity (in US dollar per GB) of outgoing WAN bandwidth usage at different regions of Amazon EC2
Location | Price |
---|---|
Frankfurt | 0.02 |
Iceland | 0.02 |
London | 0.02 |
Northern California | 0.02 |
Northern Virginia | 0.02 |
Ontario | 0.02 |
Oregon | 0.02 |
Tokyo | 0.02 |
Mumbai | 0.086 |
Seoul | 0.09 |
Singapore | 0.09 |
Sydney | 0.09 |
Sao Paulo | 0.16 |
City | Singapore | Oregon | Sydney | Sao Paulo | Mumbai |
---|---|---|---|---|---|
Singapore | 46 028.8 | 116 | 140 | 63.5 | 390 |
Oregon | 123 | 46 284.8 | 137 | 110 | 100 |
Sydney | 144 | 124 | 46 592 | 69.0 | 106 |
Sao Paulo | 66.6 | 109 | 74.5 | 46 899.2 | 79.3 |
Mumbai | 390 | 103 | 106 | 73.7 | 46 694.4 |
Table 2 Pair-wise bandwidth (in Mbit/s) between 5 different EC2 regions
City | Singapore | Oregon | Sydney | Sao Paulo | Mumbai |
---|---|---|---|---|---|
Singapore | 46 028.8 | 116 | 140 | 63.5 | 390 |
Oregon | 123 | 46 284.8 | 137 | 110 | 100 |
Sydney | 144 | 124 | 46 592 | 69.0 | 106 |
Sao Paulo | 66.6 | 109 | 74.5 | 46 899.2 | 79.3 |
Mumbai | 390 | 103 | 106 | 73.7 | 46 694.4 |
City | Singapore | Oregon | Sydney | Sao Paulo | Mumbai |
---|---|---|---|---|---|
Price | 0.09 | 0.02 | 0.14 | 0.16 | 0.086 |
Table 3 Price (in US dollar per GB) of outgoing WAN bandwidth usage
City | Singapore | Oregon | Sydney | Sao Paulo | Mumbai |
---|---|---|---|---|---|
Price | 0.09 | 0.02 | 0.14 | 0.16 | 0.086 |
1 |
ANANTHANARAYANAN G, BAHL P, BODÍK P, et al. Real⁃time video analytics: the killer App for edge computing [J]. Computer, 2017, 50(10): 58–67. DOI: 10.1109/MC.2017.3641638
DOI |
2 |
JAIN S, ZHANG X, ZHOU Y H, et al. Spatula: Efficient cross⁃camera video analytics on large camera networks [C]//2020 IEEE/ACM Symposium on Edge Computing (SEC). San Jose, USA: IEEE, 2020: 110–124. DOI: 10.1109/SEC50012.2020.00016
DOI |
3 |
JIANG J C, ANANTHANARAYANAN G, BODIK P, et al. Chameleon: scalable adaptation of video analytics [C]//2018 Conference of the ACM Special Interest Group on Data Communication. Budapest, Hungary: ACM, 2018: 253–266. DOI: 10.1145/3230543.3230574
DOI |
4 |
ZHOU Z, CHEN X, LI E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing [J]. Proceedings of the IEEE, 2019, 107(8): 1738–1762. DOI: 10.1109/JPROC.2019.2918951
DOI |
5 |
JIN H, JIA L, ZHOU Z. Boosting edge intelligence with collaborative cross⁃edge analytics [J]. IEEE Internet of Things journal, 2021, 8(4): 2444–2458. DOI: 10.1109/JIOT.2020.3034891
DOI |
6 |
PU Q F, ANANTHANARAYANAN G, BODIK P, et al. Low latency geo⁃distributed data analytics [C]//Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. London, United Kingdom: ACM, 2015: 421–434. DOI: 10.1145/2785956.2787505
DOI |
7 |
KLOUDAS K, MAMEDE M, PREGUIÇA N, et al. Pixida [J]. Proceedings of the VLDB endowment, 2015, 9(2): 72–83. DOI: 10.14778/2850578.2850582
DOI |
8 |
VULIMIRI A, CURINO C, GODFREY PB, et al. Global analytics in the face of bandwidth and regulatory constraints [C]//The 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI). Oakland, USA: USENIX, 2015:323–336. DOI: 10.1109/TST.2016.7442496
DOI |
9 |
MAO H Z, SCHWARZKOPF M, VENKATAKRISHNAN S B, et al. Learning scheduling algorithms for data processing clusters [C]//The ACM Special Interest Group on Data Communication. Beijing, China: ACM, 2019: 270–288. DOI: 10.1145/3341302.3342080
DOI |
10 |
HU Z M, LI B C, LUO J. Flutter: Scheduling tasks closer to data across geo⁃distributed datacenters [C]//The 35th Annual IEEE International Conference on Computer Communications. San Francisco, USA: IEEE, 2016: 1–9. DOI: 10.1109/INFOCOM.2016.7524469
DOI |
11 | PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking: bringing order to the Web. Technical report [R]. 1919 |
12 | O’MALLEY O. Terabyte sort on apache Hadoop [EB/OL]. [2021⁃01⁃04]. |
13 | RABKIN A, ARYE M, SEN S, et al. Aggregation and degradation in JetStream: streaming analytics in the wide area [C]//Usenix Conference on Networked Systems Design & Implementation. Seattle, USA: USENIX Association, 2014 |
[1] | ZHOU Yiheng, ZENG Wei, ZHENG Qingfang, LIU Zhilong, CHEN Jianping. A Survey on Task Scheduling of CPU-GPU Heterogeneous Cluster [J]. ZTE Communications, 2024, 22(3): 83-90. |
[2] | CUI Ziqi, WANG Gongpu, WANG Zhigang, AI Bo, XIAO Huahua. Symbiotic Radio Systems: Detection and Performance Analysis [J]. ZTE Communications, 2022, 20(3): 93-98. |
[3] | YANG Bo, MITANI Tomohiko, SHINOHARA Naoki, ZHANG Huaiqing. High-Power Simultaneous Wireless Information and Power Transfer: Injection-Locked Magnetron Technology [J]. ZTE Communications, 2022, 20(2): 3-12. |
[4] | TAN Jie, SHA Xiubin, DAI Bo, LU Ting. Analysis of Industrial Internet of Things and Digital Twins [J]. ZTE Communications, 2021, 19(2): 53-60. |
[5] | LIANG Junrui, LI Xin, YANG Hailiang. Kinetic Energy Harvesting Toward Battery-Free IoT: Fundamentals, Co-Design Necessity and Prospects [J]. ZTE Communications, 2021, 19(1): 48-60. |
[6] | ZHANG Gengxin, DING Xiaojin, QU Zhicheng. Space‑Terrestrial Integrated Architecture for Internet of Things [J]. ZTE Communications, 2020, 18(4): 3-9. |
[7] | FU Shousai, ZHANG Hesheng, CHEN Jinghe. Time Sensitive Networking Technology Overview and Performance Analysis [J]. ZTE Communications, 2018, 16(4): 57-64. |
[8] | Mahyar Shirvanimoghaddam, Sarah J. Johnson. Multiple Access Technologies for Cellular M 2M Communications [J]. ZTE Communications, 2016, 14(4): 42-49. |
[9] | Christian Jacquenet, Mohamed Boucadair. A Software-Defined Approach to IoT Networking [J]. ZTE Communications, 2016, 14(1): 61-68. |
[10] | Somayya Madakam, Ramaswamy Ramachandran. Barcelona Smart City: The Heaven on Earth (Internet of Things: Technological God) [J]. ZTE Communications, 2015, 13(4): 3-9. |
[11] | Didier El Baz, Julien Bourgeois. Smart Cities in Europe and the ALMA Logistics Project [J]. ZTE Communications, 2015, 13(4): 10-15. |
[12] | Jie Li, Eitan Altman, Corinne Touati. A General SDN-Based IoT Framework with NVF Implementation [J]. ZTE Communications, 2015, 13(3): 42-45. |
[13] | Xuemeng Li, Yongyi Wang, Fan Shi, Wenchao Jia. Crawler for Nodes in the Internet of Things [J]. ZTE Communications, 2015, 13(3): 46-50. |
[14] | Fuji Ren, Yu Gu. Using Artificial Intelligence in the Internet of Things [J]. ZTE Communications, 2015, 13(2): 1-2. |
[15] | Yixin Zhong. I2oT: Advanced Direction of the Internet of Things [J]. ZTE Communications, 2015, 13(2): 3-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||