ZTE Communications ›› 2021, Vol. 19 ›› Issue (1): 48-60.DOI: 10.12142/ZTECOM.202101007
• Special Topic • Previous Articles Next Articles
LIANG Junrui(), LI Xin, YANG Hailiang
Received:
2021-01-22
Online:
2021-03-25
Published:
2021-04-09
About author:
LIANG Junrui (LIANG Junrui, LI Xin, YANG Hailiang. Kinetic Energy Harvesting Toward Battery-Free IoT: Fundamentals, Co-Design Necessity and Prospects[J]. ZTE Communications, 2021, 19(1): 48-60.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202101007
Transducer | Picture | Mechanical Feature | Electrical Feature |
---|---|---|---|
Electromagnetic | ? Large velocity preferred ? Complex assembly ? Small- to large-scale systems ? Need no contact ? Bidirectional force | ? Small voltage (mV–V) ? Large current (mA–A) ? Inductive source ? Small output impedance ? Self-generation | |
Piezoelectric | ? Large force (hard materials); small force (soft materials) ? Simple structure ? Small- to middle-scale systems ? Need contact ? Bidirectional force | ? Large voltage (V–kV) ? Small current (nA–μA) ? Capacitive source ? Large output impedance ? Self-generation | |
Electrostatic including triboelectric | ? Small displacement (out-of-phase); large displacement (in-phase) ? Simple structure ? Small-scale system ? Need no contact ? Unidirectional force | ? Very high voltage (kV) ? Very small current (nA) ? Capacitive source ? Very large output impedance ? Need a bias-voltage to run (self-generation for triboelectric generator) |
Table 1 Three types of major electromechanical transducers for kinetic energy harvesting (KEH) and their features
Transducer | Picture | Mechanical Feature | Electrical Feature |
---|---|---|---|
Electromagnetic | ? Large velocity preferred ? Complex assembly ? Small- to large-scale systems ? Need no contact ? Bidirectional force | ? Small voltage (mV–V) ? Large current (mA–A) ? Inductive source ? Small output impedance ? Self-generation | |
Piezoelectric | ? Large force (hard materials); small force (soft materials) ? Simple structure ? Small- to middle-scale systems ? Need contact ? Bidirectional force | ? Large voltage (V–kV) ? Small current (nA–μA) ? Capacitive source ? Large output impedance ? Self-generation | |
Electrostatic including triboelectric | ? Small displacement (out-of-phase); large displacement (in-phase) ? Simple structure ? Small-scale system ? Need no contact ? Unidirectional force | ? Very high voltage (kV) ? Very small current (nA) ? Capacitive source ? Very large output impedance ? Need a bias-voltage to run (self-generation for triboelectric generator) |
Figure 3 Energy picture during intermittent computing. The energy availability depends on environmental conditions and sometimes also the loading effect. Intermittent execution is a side-effect strategy to cope with this battery-free model, where the blackout periods separating the bursts of execution are unknown
1 |
BHATTI N A, ALIZAI M H, SYED A A, et al. Energy harvesting and wireless transfer in sensor network applications [J]. ACM transactions on sensor networks, 2016, 12(3): 1–40. DOI: 10.1145/2915918
DOI |
2 |
LIU V, PARKS A, TALLA V, et al. Ambient backscatter [J]. ACM SIGCOMM computer communication review, 2013, 43(4): 39–50. DOI: 10.1145/2534169.2486015
DOI |
3 |
LI X, MA X Y, ZHANG P L, et al. Escape or exploit? a noise⁃modulation⁃based communication under harsh interference [C]//Proc. 7th International Workshop on Real⁃World Embedded Wireless Systems and Networks. New York, USA: ACM, 2018: 31–36. DOI: 10.1145/3277883.3277890
DOI |
4 | WANG A, IYER V, TALLA V, et al. FM backscatter: enabling connected cities and smart fabrics [C]//14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). Boston, USA: USENIX, 2017: 243–258 |
5 |
TALLA V, KELLOGG B, GOLLAKOTA S, et al. Battery⁃free cellphone [J]. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2017, 1(2): 1–20. DOI: 10.1145/3090090
DOI |
6 |
SAFFARI A, HESSAR M, NADERIPARIZI S, et al. Battery⁃free wireless video streaming camera system[C]//IEEE International Conference on RFID (RFID). Phoenix, USA: IEEE, 2019: 1–8. DOI: 10.1109/RFID.2019.8719264
DOI |
7 |
GOMEZ A, SIGRIST L, SCHALCH T, et al. Efficient, long⁃term logging of rich data sensors using transient sensor nodes [J]. ACM transactions on embedded computing systems, 2018, 17(1): 1–23. DOI: 10.1145/3047499
DOI |
8 |
AFANASOV M, BHATTI N A, CAMPAGNA D, et al. Battery⁃less zero⁃maintenance embedded sensing at the mithræum of circus maximus [C]//Proc. 18th Conference on Embedded Networked Sensor Systems. New York, USA: ACM, 2020: 368–381. DOI: 10.1145/3384419.3430722
DOI |
9 |
LIU H C, FU H L, SUN L N, et al. Hybrid energy harvesting technology: from materials, structural design, system integration to applications [J]. Renewable and sustainable energy reviews, 2021, 137: 110473. DOI:10.1016/j.rser.2020.110473
DOI |
10 |
SAFAEI M, SODANO H A, ANTON S R. A review of energy harvesting using piezoelectric materials: State⁃of⁃the⁃art a decade later (2008–2018) [J]. Smart materials and structures, 2019, 28(11): 113001. DOI:10.1088/1361-665x/ab36e4
DOI |
11 |
BRENES A, MOREL A, JUILLARD J, et al. Maximum power point of piezoelectric energy harvesters: a review of optimality condition for electrical tuning [J]. Smart materials and structures, 2020, 29(3): 033001. DOI: 10.1088/1361-665x/ab6484
DOI |
12 |
MA D, LAN G H, HASSAN M, et al. Sensing, computing, and communications for energy harvesting IoTs: a survey [J]. IEEE communications surveys & tutorials, 2020, 22(2): 1222–1250. DOI: 10.1109/COMST.2019.2962526
DOI |
13 |
ANTON S R, SODANO H A. A review of power harvesting using piezoelectric materials (2003–2006) [J]. Smart materials and structures, 2007, 16(3): R1. DOI: 10.1088/0964-1726/16/3/r01
DOI |
14 |
TANG L H, YANG Y W, SOH C K. Toward broadband vibration⁃based energy harvesting [J]. Journal of intelligent material systems and structures, 2010, 21(18): 1867–1897. DOI: 10.1177/1045389x10390249
DOI |
15 |
HARNE R L, WANG K W. A review of the recent research on vibration energy harvesting via bistable systems [J]. Smart materials and structures, 2013, 22(2): 023001. DOI: 10.1088/0964-1726/22/2/023001
DOI |
16 |
LESIEUTRE G A, OTTMAN G K, HOFMANN H F. Damping as a result of piezoelectric energy harvesting [J]. Journal of sound and vibration, 2004, 269(3/4/5): 991–1001. DOI: 10.1016/S0022-460X(03)00210-4
DOI |
17 |
LIANG J R, LIAO W H. Piezoelectric energy harvesting and dissipation on structural damping [J]. Journal of intelligent material systems and structures, 2009, 20(5): 515–527. DOI: 10.1177/1045389x08098194
DOI |
18 |
LIANG J R, LIAO W H. Energy flow in piezoelectric energy harvesting systems [J]. Smart materials and structures, 2011, 20(1): 015005. DOI: 10.1088/0964-1726/20/1/015005
DOI |
19 |
LEFEUVRE E, BADEL A, BRENES A, et al. Analysis of piezoelectric energy harvesting system with tunable SECE interface [J]. Smart materials and structures, 2017, 26(3): 035065. DOI: 10.1088/1361-665x/aa5e92
DOI |
20 |
MOREL A, PILLONNET G, GASNIER P, et al. Frequency tuning of piezoelectric energy harvesters thanks to a short⁃circuit synchronous electric charge extraction [J]. Smart materials and structures, 2019, 28(2): 025009. DOI: 10.1088/1361-665x/aaf0ea
DOI |
21 |
ZHAO B, WANG J H, LIANG J R, et al. A dual⁃effect solution for broadband piezoelectric energy harvesting [J]. Applied physics letters, 2020, 116(6): 063901. DOI: 10.1063/1.5139480
DOI |
22 |
SHU Y C, LIEN I C. Analysis of power output for piezoelectric energy harvesting systems [J]. Smart materials and structures, 2006, 15(6): 1499–1512. DOI: 10.1088/0964-1726/15/6/001
DOI |
23 |
LIANG J R, LIAO W H. Impedance modeling and analysis for piezoelectric energy harvesting systems [J]. IEEE/ASME transactions on mechatronics, 2012, 17(6): 1145–1157. DOI: 10.1109/TMECH.2011.2160275
DOI |
24 |
FAN K Q, CAI M L, WANG F, et al. A string⁃suspended and driven rotor for efficient ultra⁃low frequency mechanical energy harvesting [J]. Energy conversion and management, 2019, 198: 111820. DOI: 10.1016/j.enconman.2019.111820
DOI |
25 |
TAO K, TANG L H, WU J, et al. Investigation of multimodal electret⁃based MEMS energy harvester with impact⁃induced nonlinearity [J]. Journal of microelectromechanical systems, 2018, 27(2): 276–288. DOI: 10.1109/JMEMS.2018.2792686
DOI |
26 |
HU G B, LIANG J R, LAN C B, et al. A twist piezoelectric beam for multi⁃directional energy harvesting [J]. Smart materials and structures, 2020, 29(11): 11LT01. DOI: 10.1088/1361-665x/abb648
DOI |
27 |
FANG S T, FU X L, DU X N, et al. A music⁃box⁃like extended rotational plucking energy harvester with multiple piezoelectric cantilevers [J]. Applied physics letters, 2019, 114(23): 233902. DOI: 10.1063/1.5098439
DOI |
28 |
ZHAO L Y, TANG L H, LIANG J R, et al. Synergy of wind energy harvesting and synchronized switch harvesting interface circuit [J]. IEEE/ASME transactions on mechatronics, 2017, 22(2): 1093–1103. DOI: 10.1109/TMECH.2016.2630732
DOI |
29 |
WANG Y, INMAN D J. Experimental validation for a multifunctional wing spar with sensing, harvesting, and gust alleviation capabilities [J]. IEEE/ASME transactions on mechatronics, 2013, 18(4): 1289–1299. DOI: 10.1109/TMECH.2013.2255063
DOI |
30 | AHMED R, MIR F, BANERJEE S. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity [J]. Smart materials & structures, 2017, 26(8): 085031 |
31 |
CHEN Z S, GUO B, YANG Y M, et al. Metamaterials⁃based enhanced energy harvesting: a review [J]. Physica B: condensed matter, 2014, 438: 1–8. DOI: 10.1016/j.physb.2013.12.040
DOI |
32 |
YU J. Review of nonlinear vibration energy harvesting: duffing, bistability, parametric, stochastic and others [J]. Journal of intelligent material systems and structures, 2020, 31(7): 921–944. DOI: 10.1177/1045389x20905989
DOI |
33 |
SCRUGGS J T. On the causal power generation limit for a vibratory energy harvester in broadband stochastic response [J]. Journal of intelligent material systems and structures, 2010, 21(13): 1249–1262. DOI: 10.1177/1045389x10361794
DOI |
34 |
GUAN M J, LIAO W H. Design and analysis of a piezoelectric energy harvester for rotational motion system [J]. Energy conversion and management, 2016, 111: 239–244. DOI: 10.1016/j.enconman.2015.12.061
DOI |
35 |
TAN T, YAN Z. Analytical solution and optimal design for galloping⁃based piezoelectric energy harvesters [J]. Applied physics letters, 2016, 109(25): 253902. DOI: 10.1063/1.4972556
DOI |
36 |
FU X L, LIAO W H. Nondimensional model and parametric studies of impact piezoelectric energy harvesting with dissipation [J]. Journal of sound and vibration, 2018, 429: 78–95. DOI: 10.1016/j.jsv.2018.05.013
DOI |
37 |
GU L, LIVERMORE C. Impact⁃driven, frequency up⁃converting coupled vibration energy harvesting device for low frequency operation [J]. Smart materials and structures, 2011, 20(4): 045004. DOI: 10.1088/0964-1726/20/4/045004
DOI |
38 |
EVANS M, TANG L H, TAO K, et al. Design and optimisation of an underfloor energy harvesting system [J]. Sensors and actuators A: physical, 2019, 285: 613–622. DOI: 10.1016/j.sna.2018.12.002
DOI |
39 |
LIU H L, HUA R, LU Y, et al. Boosting the efficiency of a footstep piezoelectric⁃stack energy harvester using the synchronized switch technology [J]. Journal of intelligent material systems and structures, 2019, 30(6): 813⁃822. DOI: 10.1177/1045389x19828512
DOI |
40 |
LELAND E S, WRIGHT P K. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload [J]. Smart materials and structures, 2006, 15(5): 1413–1420. DOI: 10.1088/0964-1726/15/5/030
DOI |
41 |
SHAHRUZ S M. Design of mechanical band⁃pass filters for energy scavenging: multi⁃degree⁃of⁃freedom models [J]. Journal of vibration and control, 2008, 14(5): 753–768. DOI: 10.1177/1077546307083274
DOI |
42 | DAQAQ M F, MASANA R, ERTURK A, et al. On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion [J]. Applied mechanics reviews, 2014, 66(4): 040801 |
43 |
BEEBY S P, TORAH R N, TUDOR M J, et al. A micro electromagnetic generator for vibration energy harvesting [J]. Journal of micromechanics and microengineering, 2007, 17(7): 1257–1265. DOI: 10.1088/0960-1317/17/7/007
DOI |
44 |
YANG Z B, ZHOU S X, ZU J, et al. High⁃performance piezoelectric energy harvesters and their applications [J]. Joule, 2018, 2(4): 642–697. DOI: 10.1016/j.joule.2018.03.011
DOI |
45 |
TORRES E O, RINCON⁃MORA G A. Electrostatic energy⁃harvesting and battery⁃charging CMOS system prototype [J]. IEEE transactions on circuits and systems I: regular papers, 2009, 56(9): 1938–1948. DOI: 10.1109/TCSI.2008.2011578
DOI |
46 |
BASSET P, BLOKHINA E, GALAYKO D. Electrostatic kinetic energy harvesting [M]. Hoboken, USA:John Wiley & Sons, Inc., 2016. DOI: 10.1002/9781119007487
DOI |
47 |
WANG Z L, SONG J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science, 2006, 312(5771): 242–246. DOI: 10.1126/science.1124005
DOI |
48 |
QIN Y, WANG X D, WANG Z L. Microfibre–nanowire hybrid structure for energy scavenging [J]. Nature, 2008, 451(7180): 809–813. DOI: 10.1038/nature06601
DOI |
49 | WANG Z L, LIN L, CHEN J, et al. Triboelectric nanogenerators [M]. Heidelberg, Germany: Springer, 2016 |
50 |
NARITA F, FOX M. A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications [J]. Advanced engineering materials, 2018, 20(5): 1700743. DOI: 10.1002/adem.201700743
DOI |
51 |
PRIYA S, SONG H C, ZHOU Y, et al. A review on piezoelectric energy harvesting: materials, methods, and circuits [J]. Energy harvesting and systems, 2019, 4(1). DOI: 10.1515/EHS-2016-0028
DOI |
52 |
WANG Z L, JIANG T, XU L. Toward the blue energy dream by triboelectric nanogenerator networks [J]. Nano energy, 2017, 39: 9–23. DOI: 10.1016/j.nanoen.2017.06.035
DOI |
53 |
XU W H, ZHENG H X, LIU Y, et al. A droplet⁃based electricity generator with high instantaneous power density [J]. Nature, 2020, 578(7795): 392–396. DOI: 10.1038/s41586-020-1985-6
DOI |
54 |
SZARKA G D, STARK B H, BURROW S G. Review of power conditioning for kinetic energy harvesting systems [J]. IEEE transactions on power electronics, 2012, 27(2): 803–815. DOI: 10.1109/TPEL.2011.2161675
DOI |
55 |
OTTMAN G K, HOFMANN H F, LESIEUTRE G A. Optimized piezoelectric energy harvesting circuit using step⁃down converter in discontinuous conduction mode [J]. IEEE transactions on power electronics, 2003, 18(2): 696–703. DOI: 10.1109/TPEL.2003.809379
DOI |
56 |
OTTMAN G K, HOFMANN H F, BHATT A C, et al. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply [J]. IEEE transactions on power electronics, 2002, 17(5): 669–676. DOI: 10.1109/TPEL.2002.802194
DOI |
57 |
LOONG C N, CHANG C C, DIMITRAKOPOULOS E G. Circuit nonlinearity effect on the performance of an electromagnetic energy harvester⁃structure system [J]. Engineering structures, 2018, 173: 449–459. DOI: 10.1016/j.engstruct.2018.06.090
DOI |
58 |
LIANG J R, GE C, SHU Y C. Impedance modeling of electromagnetic energy harvesting system using full⁃wave bridge rectifier [C]//Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring Conference. Proc. SPIE10164, Active and Passive Smart Structures and Integrated Systems, Portland, USA: SPIE, 2017: 101642N. DOI: 10.1117/12.2259870
DOI |
59 |
ROUNDY S, LELAND E S, BAKER J, et al. Improving power output for vibration⁃based energy scavengers [J]. IEEE pervasive computing, 2005, 4(1): 28–36. DOI: 10.1109/MPRV.2005.14
DOI |
60 |
MITCHESON P D, YEATMAN E M, RAO G K, et al. Energy harvesting from human and machine motion for wireless electronic devices [J]. Proceedings of the IEEE, 2008, 96(9): 1457–1486. DOI: 10.1109/JPROC.2008.927494
DOI |
61 |
KONG N, HA D S, ERTURK A, et al. Resistive impedance matching circuit for piezoelectric energy harvesting [J]. Journal of intelligent material systems and structures, 2010, 21(13): 1293–1302. DOI: 10.1177/1045389x09357971
DOI |
62 | ZHAO B, LIANG J. On the circuit solutions towards broadband and high⁃capability piezoelectric energy harvesting systems [M]//Active and Passive Smart Structures and Integrated Systems XII, vol. 10595. Bellingham, USA: SPIE, 2018: 105950E |
63 | BRUFAU⁃PENELLA J, PUIG⁃VIDAL M. Piezoelectric energy harvesting improvement with complex conjugate impedance matching [J]. Journal of intelligent material systems and structures, 2009, 20(5): 597–608 |
64 |
KIM H, PRIYA S, STEPHANOU H, et al. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting [J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2007, 54(9): 1851–1859. DOI: 10.1109/TUFFC.2007.469
DOI |
65 |
CHENG S, WANG N G, ARNOLD D P. Modeling of magnetic vibrational energy harvesters using equivalent circuit representations [J]. Journal of micromechanics and microengineering, 2007, 17(11): 2328–2335. DOI: 10.1088/0960-1317/17/11/021
DOI |
66 |
FLEMING A J, BEHRENS S, MOHEIMANI S O R. Synthetic impedance for implementation of piezoelectric shunt⁃damping circuits [J]. Electronics letters, 2000, 36(18): 1525. DOI: 10.1049/el: 20001083
DOI |
67 |
PARK C H, INMAN D J. Enhanced piezoelectric shunt design [J]. Shock and vibration, 2003, 10(2): 127–133. DOI: 10.1155/2003/863252
DOI |
68 |
LEFEUVRE E, BADEL A, RICHARD C, et al. Piezoelectric energy harvesting device optimization by synchronous electric charge extraction [J]. Journal of intelligent material systems and structures, 2005, 16(10): 865–876. DOI: 10.1177/1045389x05056859
DOI |
69 |
GUYOMAR D, BADEL A, LEFEUVRE E, et al. Toward energy harvesting using active materials and conversion improvement by nonlinear processing [J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2005, 52(4): 584–595. DOI: 10.1109/TUFFC.2005.1428041
DOI |
70 |
LOMBARDI G, LALLART M. Synchronous electric charge and induced current extraction (SECICE): a unified nonlinear technique combining piezoelectric and electromagnetic harvesting [J]. Smart materials and structures, 2021, 30(2): 025029. DOI: 10.1088/1361-665x/abd346
DOI |
71 |
LALLART M, LOMBARDI G. Synchronized switch harvesting on electromagnetic system: a nonlinear technique for hybrid energy harvesting based on active inductance [J]. Energy conversion and management, 2020, 203: 112135. DOI: 10.1016/j.enconman.2019.112135
DOI |
72 |
LI X, SUN Y. An SSHI rectifier for triboelectric energy harvesting [J]. IEEE transactions on power electronics, 2020, 35(4): 3663–3678. DOI: 10.1109/TPEL.2019.2934676
DOI |
73 |
XU S X, DING W B, GUO H Y, et al. Boost the performance of triboelectric nanogenerators through circuit oscillation [J]. Advanced energy materials, 2019, 9(30): 1900772. DOI: 10.1002/aenm.201900772
DOI |
74 |
GUAN M J, LIAO W H. Characteristics of energy storage devices in piezoelectric energy harvesting systems [J]. Journal of intelligent material systems and structures, 2008, 19(6): 671–680. DOI: 10.1177/1045389x07078969
DOI |
75 | LTC3588⁃1 nanopower energy harvesting power supply [R]. Milpitas, USA: Linear Technologie, 2010 |
76 |
HUANG Q Y, MEI Y, WANG W, et al. Toward battery⁃free wearable devices: the synergy between two feet [J]. ACM transactions on cyber⁃physical systems, 2018, 2(3): 20. DOI: 10.1145/3185503
DOI |
77 |
LI X, TENG L, TANG H, et al. ViPSN: A vibration⁃powered IoT platform [J]. IEEE Internet of Things journal, 2021, 8(3): 1728–1739. DOI: 10.1109/JIOT.2020.3016993
DOI |
78 | BQ25505: ultra low⁃power boost charger with battery management and autonomous power multiplexer for primary battery in energy harvester applications [R]. Dallas, USA: Texas Instruments, 2013 |
79 |
HESTER J, SORBER J. Batteries not included [J]. XRDS: crossroads, the ACM magazine for students, 2019, 26(1): 23–27. DOI: 10.1145/3351474
DOI |
80 |
SLIPER S T, CETINKAYA O, WEDDELL A S, et al. Energy⁃driven computing [J]. Philosophical transactions of the royal society A: mathematical, physical and engineering sciences, 2020, 378(2164): 20190158. DOI: 10.1098/rsta.2019.0158
DOI |
81 |
MERRETT G V, AL⁃HASHIMI B M. Energy⁃driven computing: rethinking the design of energy harvesting systems [C]//Design, Automation & Test in Europe Conference & Exhibition (DATE). Lausanne, Switzerland: IEEE, 2017: 960–965. DOI: 10.23919/DATE.2017.7927130
DOI |
82 |
XIANG T, CHI Z C, LI F, et al. Powering indoor sensing with airflows: a trinity of energy harvesting, synchronous duty⁃cycling, and sensing [C]//Proc. 11th ACM Conference on Embedded Networked Sensor Systems. New York, USA: ACM, 2013: 16. DOI: 10.1145/2517351.2517365
DOI |
83 | GOMEZ A, SIGRIST L, MAGNO M, et al. Dynamic energy burst scaling for transiently powered systems [C]//Design, Automation & Test in Europe Conference & Exhibition (DATE). Dresden, Germany: IEEE, 2016: 349–354 |
84 |
BALSAMO D, WEDDELL A S, MERRETT G V, et al. Hibernus: sustaining computation during intermittent supply for energy⁃harvesting systems [J]. IEEE embedded systems letters, 2015, 7(1): 15–18. DOI: 10.1109/LES.2014.2371494
DOI |
85 |
BALSAMO D, WEDDELL A S, DAS A, et al. Hibernus: a self⁃calibrating and adaptive system for transiently⁃powered embedded devices [J]. IEEE transactions on computer⁃aided design of integrated circuits and systems, 2016, 35(12): 1968–1980. DOI: 10.1109/TCAD.2016.2547919
DOI |
86 |
JAYAKUMAR H, RAHA A, RAGHUNATHAN V. QUICKRECALL: A low overhead HW/SW approach for enabling computations across power cycles in transiently powered computers [C]//27th International Conference on VLSI Design and 13th International Conference on Embedded Systems. Mumbai, India: IEEE, 2014: 330–335. DOI: 10.1109/VLSID.2014.63
DOI |
87 |
RANSFORD B, SORBER J, FU K. Mementos: system support for long⁃running computation on RFID⁃scale devices [C]//Proc. sixteenth international conference on architectural support for programming languages and operating systems. New York, USA: ACM, 2011: 159–170. DOI: 10.1145/1950365.1950386
DOI |
88 |
DE WINKEL J, KORTBEEK V, HESTER J, et al. Battery⁃free game boy [J]. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2020, 4(3): 1–34. DOI: 10.1145/3411839
DOI |
89 |
HESTER J, SORBER J. The future of sensing is batteryless, intermittent, and awesome[C]//Proc. 15th ACM Conference on Embedded Network Sensor Systems. New York, USA: ACM, 2017: 1–6. DOI: 10.1145/3131672.3131699
DOI |
90 |
LUCIA B, BALAJI V, COLIN A, et al. Intermittent computing: challenges and opportunities [C]//2nd Summit on Advances in Programming Languages (SNAPL 2017). Asilomar, USA: PL Community, 2017. DOI: 10.4230/LIPIcs.SNAPL.2017.8
DOI |
91 |
SAMPLE A P, YEAGER D J, POWLEDGE P S, et al. Design of an RFID⁃based battery⁃free programmable sensing platform [J]. IEEE transactions on instrumentation and measurement, 2008, 57(11): 2608–2615. DOI: 10.1109/TIM.2008.925019
DOI |
92 |
HESTER J, SORBER J. Flicker: rapid prototyping for the batteryless internet⁃of⁃things [C]//Proc. 15th ACM Conference on Embedded Network Sensor Systems. New York, USA: ACM, 2017: 19. DOI: 10.1145/3131672.3131674
DOI |
93 | WHITAKER M. Energy harvester produces power from local environment, eliminating batteries in wireless sensors [J]. Journal of analog innovation, 2010, 20(1): 1–8 |
94 | Texas Instruments Co. eZ430⁃RF2500 development tool user’s guide [EB/OL]. [2020⁃12⁃12]. |
95 | Technology of EnOcean GmbH [EB/OL]. [2020⁃12⁃13]. |
96 | Technology of Linptech Ltd. [EB/OL]. [2020⁃12⁃13]. |
97 | Technology of Chlorop Ltd. [EB/OL]. [2020⁃12⁃13]. |
98 |
ZHANG J X, GONG S B, LI X, et al. A wind⁃driven poly (tetrafluoroethylene) electret and polylactide polymer⁃based hybrid nanogenerator for self⁃powered temperature detection system [J]. Advanced sustainable systems, 2021, 5(1): 2000192. DOI: 10.1002/adsu.202000192
DOI |
99 | Technology of Perpetuum Ltd. [EB/OL]. [2020⁃12⁃15]. |
100 | Technology of ReVibe Energy Ltd. [EB/OL]. [2020⁃12⁃15]. |
101 | Technology of Xidas Ltd. [EB/OL]. [2020⁃12⁃15]. |
102 | Technology of Enervibe Ltd. [EB/OL]. [2020⁃12⁃15]. |
103 | Technology of NOWI Ltd. [EB/OL]. [2020⁃12⁃16]. |
104 | Technology of Atmosic Ltd. [EB/OL]. [2020⁃12⁃16]. |
105 | Renesas Electronics Co. RE Cortex⁃M0+Ultra⁃low Power SOTB MCUs. [EB/OL]. [2020⁃12⁃16]. |
106 | Technology of ZF GmbH [EB/OL]. [2020⁃12⁃20]. |
107 | Alps Alpine Co. Spga series energy harvester [EB/OL]. [2020⁃12⁃20]. |
108 | Technology of Pavegen Ltd. [EB/OL]. [2020⁃12⁃20]. |
109 | Technology of Bionic Power Ltd. [EB/OL]. [2020⁃12⁃20]. |
110 | MaizeKennedy. Power from the People?A Long Way to Go. [EB/OL]. [2020⁃12⁃20]. |
111 |
ROME L C, FLYNN L, YOO T D. Biomechanics: rubber bands reduce the cost of carrying loads [J]. Nature, 2006, 444(7122): 1023–1024. DOI: 10.1038/4441023a
DOI |
112 |
ROME L C, FLYNN L, GOLDMAN E M, et al. Generating electricity while walking with loads [J]. Science, 2005, 309(5741): 1725–1728. DOI: 10.1126/science.1111063
DOI |
113 |
DONELAN J M, LI Q, NAING V, et al. Biomechanical energy harvesting: generating electricity during walking with minimal user effort [J]. Science, 2008, 319(5864): 807–810. DOI: 10.1126/science.1149860
DOI |
[1] | RAN Xiongbo, DAI Zhijiang, ZHONG Kang, PANG Jingzhou, LI Mingyu. Broadband Sequential Load-Modulated Balanced Amplifier Using Coupler-PA Co-Design Approach [J]. ZTE Communications, 2022, 20(4): 62-68. |
[2] | CUI Ziqi, WANG Gongpu, WANG Zhigang, AI Bo, XIAO Huahua. Symbiotic Radio Systems: Detection and Performance Analysis [J]. ZTE Communications, 2022, 20(3): 93-98. |
[3] | YANG Bo, MITANI Tomohiko, SHINOHARA Naoki, ZHANG Huaiqing. High-Power Simultaneous Wireless Information and Power Transfer: Injection-Locked Magnetron Technology [J]. ZTE Communications, 2022, 20(2): 3-12. |
[4] | ZHAO Kongyange, GAO Bin, ZHOU Zhi. Cost-Effective Task Scheduling for Collaborative Cross-Edge Analytics [J]. ZTE Communications, 2021, 19(2): 11-19. |
[5] | TAN Jie, SHA Xiubin, DAI Bo, LU Ting. Analysis of Industrial Internet of Things and Digital Twins [J]. ZTE Communications, 2021, 19(2): 53-60. |
[6] | ZHANG Gengxin, DING Xiaojin, QU Zhicheng. Space‑Terrestrial Integrated Architecture for Internet of Things [J]. ZTE Communications, 2020, 18(4): 3-9. |
[7] | FU Shousai, ZHANG Hesheng, CHEN Jinghe. Time Sensitive Networking Technology Overview and Performance Analysis [J]. ZTE Communications, 2018, 16(4): 57-64. |
[8] | ZHANG Wenmei, CHEN Xinwei. Overview of Co-Design Approach to RF Filter and Antenna [J]. ZTE Communications, 2018, 16(1): 61-66. |
[9] | Mahyar Shirvanimoghaddam, Sarah J. Johnson. Multiple Access Technologies for Cellular M 2M Communications [J]. ZTE Communications, 2016, 14(4): 42-49. |
[10] | Christian Jacquenet, Mohamed Boucadair. A Software-Defined Approach to IoT Networking [J]. ZTE Communications, 2016, 14(1): 61-68. |
[11] | Somayya Madakam, Ramaswamy Ramachandran. Barcelona Smart City: The Heaven on Earth (Internet of Things: Technological God) [J]. ZTE Communications, 2015, 13(4): 3-9. |
[12] | Didier El Baz, Julien Bourgeois. Smart Cities in Europe and the ALMA Logistics Project [J]. ZTE Communications, 2015, 13(4): 10-15. |
[13] | Jie Li, Eitan Altman, Corinne Touati. A General SDN-Based IoT Framework with NVF Implementation [J]. ZTE Communications, 2015, 13(3): 42-45. |
[14] | Xuemeng Li, Yongyi Wang, Fan Shi, Wenchao Jia. Crawler for Nodes in the Internet of Things [J]. ZTE Communications, 2015, 13(3): 46-50. |
[15] | Fuji Ren, Yu Gu. Using Artificial Intelligence in the Internet of Things [J]. ZTE Communications, 2015, 13(2): 1-2. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||