ZTE Communications ›› 2023, Vol. 21 ›› Issue (2): 80-87.DOI: 10.12142/ZTECOM.202302011
• Special Topic • Previous Articles Next Articles
LI Yuting1,, DING Yi2, GAO Jiangchuan1, LIU Yusha1(), HU Jie1, YANG Kun3
Received:
2023-02-11
Online:
2023-06-13
Published:
2023-06-13
About author:
LI Yuting is with the University of Electronic Science and Technology of China. Her current research interests include data and energy integrated communication networks and machine learning.|LIU Yusha (LI Yuting, DING Yi, GAO Jiangchuan, LIU Yusha, HU Jie, YANG Kun. UAV Autonomous Navigation for Wireless Powered Data Collection with Onboard Deep Q-Network[J]. ZTE Communications, 2023, 21(2): 80-87.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202302011
Notation | Definition |
---|---|
Sensor index, number of ground sensors | |
Time slot index, total UAV flight time slots | |
Time slot duration, total UAV flight time | |
Coordinate of the k-th sensor | |
Velocity of the UAV at the t-th time slot | |
Position of the UAV at the t-th time slot | |
Distance between sensor | |
Channel gain between sensor | |
The coverage range of the UAV | |
Battery level of the k-th sensor | |
Operation mode factor of sensor | |
Transmit power of the UAV and ground sensors |
Table 1 Notation list
Notation | Definition |
---|---|
Sensor index, number of ground sensors | |
Time slot index, total UAV flight time slots | |
Time slot duration, total UAV flight time | |
Coordinate of the k-th sensor | |
Velocity of the UAV at the t-th time slot | |
Position of the UAV at the t-th time slot | |
Distance between sensor | |
Channel gain between sensor | |
The coverage range of the UAV | |
Battery level of the k-th sensor | |
Operation mode factor of sensor | |
Transmit power of the UAV and ground sensors |
DNN Parameters | Value |
---|---|
Learning rate | 0.000 1 |
Discount factor | 0.9 |
Replay memory size | 10 000 |
Batch size | 32 |
ReLu hidden neurons | 20 |
Number of neural network layers | 2 |
Table 2 Simulation parameters: DNN
DNN Parameters | Value |
---|---|
Learning rate | 0.000 1 |
Discount factor | 0.9 |
Replay memory size | 10 000 |
Batch size | 32 |
ReLu hidden neurons | 20 |
Number of neural network layers | 2 |
System Parameters | Value |
---|---|
Bandwidth | 1 MHz |
Energy conversion efficiency | 0.9 |
Noise power | -60 dBm |
Flying height | 10 m |
Coverage area | 70 m2 |
Steering angle | |
Flying velocity |
Table 3 System parameters
System Parameters | Value |
---|---|
Bandwidth | 1 MHz |
Energy conversion efficiency | 0.9 |
Noise power | -60 dBm |
Flying height | 10 m |
Coverage area | 70 m2 |
Steering angle | |
Flying velocity |
1 |
HU J, WANG Q, YANG K. Energy self-sustainability in full-spectrum 6G [J]. IEEE wireless communications, 2021, 28(1): 104–111. DOI: 10.1109/MWC.001.2000156
DOI |
2 |
WU D P, HE J, WANG H G, et al. A hierarchical packet forwarding mechanism for energy harvesting wireless sensor networks [J]. IEEE communications magazine, 2015, 53(8): 92–98. DOI: 10.1109/MCOM.2015.7180514
DOI |
3 |
GHARIBI M, BOUTABA R, WASLANDER S L. Internet of drones [J]. IEEE access, 2016, 4: 1148–1162. DOI: 10.1109/ACCESS.2016.2537208
DOI |
4 |
ZHU S C, GUI L, CHENG N, et al. Joint design of access point selection and path planning for UAV-assisted cellular networks [J]. IEEE Internet of Things journal, 2020, 7(1): 220–233. DOI: 10.1109/JIOT.2019.2947718
DOI |
5 |
GHORBEL M BEN, RODRÍGUEZ-DUARTE D, GHAZZAI H, et al. Joint position and travel path optimization for energy efficient wireless data gathering using unmanned aerial vehicles [J]. IEEE transactions on vehicular technology, 2019, 68(3): 2165–2175. DOI: 10.1109/TVT.2019.2893374
DOI |
6 |
HU J, CAI X P, YANG K. Joint trajectory and scheduling design for UAV aided secure backscatter communications [J]. IEEE wireless communications letters, 2020, 9(12): 2168–2172. DOI: 10.1109/LWC.2020.3016174
DOI |
7 |
XIE L F, XU J, ZHANG R. Throughput maximization for UAV-enabled wireless powered communication networks [J]. IEEE Internet of Things journal, 2019, 6(2): 1690–1703. DOI: 10.1109/JIOT.2018.2875446
DOI |
8 | MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning [EB/OL]. [2023-03-10]. |
9 |
LI K, NI W, TOVAR E, et al. On-board deep Q-network for UAV-assisted online power transfer and data collection [J]. IEEE transactions on vehicular technology, 2019, 68(12): 12215–12226. DOI: 10.1109/TVT.2019.2945037
DOI |
10 |
TANG J, SONG J R, OU J H, et al. Minimum throughput maximization for multi-UAV enabled WPCN: A deep reinforcement learning method [J]. IEEE access, 2020, 8: 9124–9132. DOI: 10.1109/ACCESS.2020.2964042
DOI |
11 |
LIU C H, CHEN Z Y, TANG J, et al. Energy-efficient UAV control for effective and fair communication coverage: a deep reinforcement learning approach [J]. IEEE journal on selected areas in communications, 2018, 36(9): 2059–2070. DOI: 10.1109/JSAC.2018.2864373
DOI |
12 |
LU Y P, XIONG G, ZHANG X, et al. Uplink throughput maximization in UAV-aided mobile networks: a DQN-based trajectory planning method [J]. Drones, 2022, 6(12): 378. DOI: 10.3390/drones6120378
DOI |
13 |
ABEDIN S F, MUNIR M S, TRAN N H, et al. Data freshness and energy-efficient UAV navigation optimization: a deep reinforcement learning approach [J]. IEEE transactions on intelligent transportation systems, 2021, 22(9): 5994–6006. DOI: 10.1109/TITS.2020.3039617
DOI |
14 |
ZHANG T K, LEI J Y, LIU Y W, et al. Trajectory optimization for UAV emergency communication with limited user equipment energy: a safe-DQN approach [J]. IEEE transactions on green communications and networking, 2021, 5(3): 1236–1247. DOI: 10.1109/TGCN.2021.3068333
DOI |
15 |
LI K, NI W, TOVAR E, et al. Joint flight cruise control and data collection in UAV-aided Internet of Things: an onboard deep reinforcement learning approach [J]. IEEE Internet of Things journal, 2021, 8(12): 9787–9799. DOI: 10.1109/JIOT.2020.3019186
DOI |
[1] | WEI Zhiqing, ZHANG Yongji, JI Danna, LI Chenfei. Sensing and Communication Integrated Fast Neighbor Discovery for UAV Networks [J]. ZTE Communications, 2024, 22(3): 69-82. |
[2] | ZHAO Yaqiong, KE Hongqin, XU Wei, YE Xinquan, CHEN Yijian. RIS-Assisted Cell-Free MIMO: A Survey [J]. ZTE Communications, 2024, 22(1): 77-86. |
[3] | YANG Bo, MITANI Tomohiko, SHINOHARA Naoki, ZHANG Huaiqing. High-Power Simultaneous Wireless Information and Power Transfer: Injection-Locked Magnetron Technology [J]. ZTE Communications, 2022, 20(2): 3-12. |
[4] | CHANG Mingyang, HAN Jiaqi, MA Xiangjin, XUE Hao, WU Xiaonan, LI Long, CUI Tiejun. Programmable Metasurface for Simultaneously Wireless Information and Power Transfer System [J]. ZTE Communications, 2022, 20(2): 48-62. |
[5] | LI Xiuxian, LI Zhetao, OUYANG Yan, DUAN Haohua, XIANG Liyao. Using UAV to Detect Truth for Clean Data Collection in Sensor‑Cloud Systems [J]. ZTE Communications, 2021, 19(3): 30-45. |
[6] | LIN Xinhua, ZHANG Jing, LI Qiang. Cluster Head Selection Algorithm for UAV Assisted Clustered IoT Network Utilizing Blockchain [J]. ZTE Communications, 2021, 19(1): 30-38. |
[7] | Mohammed SEID, Stephen ANOKYE, SUN Guolin. Machine Learning Based Unmanned Aerial Vehicle Enabled Fog-Radio Aerial Vehicle Enabled Fog-Radio Access Network and Edge Computing [J]. ZTE Communications, 2019, 17(4): 33-45. |
[8] | Stephen ANOKYE, Mohammed SEID, SUN Guolin. A Survey on Machine Learning Based Proactive Caching [J]. ZTE Communications, 2019, 17(4): 46-55. |
[9] | LI Tongxin, SHENG Min, LYU Ruiling, LIU Junyu, LI Jiandong. UAV Assisted Heterogeneous Wireless Networks: Potentials and Challenges [J]. ZTE Communications, 2018, 16(2): 3-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||