ZTE Communications ›› 2020, Vol. 18 ›› Issue (3): 57-63.DOI: 10.12142/ZTECOM.202003009
• Review • Previous Articles Next Articles
CHEN Liangqin1, TIAN Liping1, XU Zhimeng1, CHEN Zhizhang1,2()
Received:
2020-07-14
Online:
2020-09-25
Published:
2020-11-03
About author:
CHEN Liangqin received the Ph.D. degree in communication and information systems from Fuzhou University, China in 2018. Since 2005, she has undertaken teaching and research work at Fuzhou University. Her research interests include wireless signal transmission, wireless sensing and detection.|TIAN Liping received the Master’s degree in communication and information systems from Fuzhou University, China in 2013. She is currently pursuing the Ph.D. degree at Fuzhou University. Her research interests include wireless signal transmission and sensing.|XU Zhimeng received the B.Sc. degree in radio physics from Lanzhou University, China in 2002, the M.Sc. and Ph.D. degrees in information and communication engineering from Xidian University and Fuzhou University in 2005 and 2013, respectively. He was with the Department of Electrical and Computer Engineering at Dalhousie University, Canada as a postdoctoral fellow from 2016 to 2017 and was a visiting scholar with the Department of Technology at the University of Northern Iowa, USA from 2011 to 2012. His research interests include ultra-wideband technologies, wireless sensing technologies, and wireless information & power transfer technologies.|CHEN Zhizhang (Supported by:
CHEN Liangqin, TIAN Liping, XU Zhimeng, CHEN Zhizhang. A Survey of Wi-Fi Sensing Techniques with Channel State Information[J]. ZTE Communications, 2020, 18(3): 57-63.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202003009
1 |
LU Y, LV S H, WANG X D, et al. A survey on Wi⁃Fi based human behavior analysis technology [J]. Chinese journal of computers, 2019, 42(2): 1–21. DOI: 10.11897/SP.J.1016.2019.00231
DOI |
2 |
WANG J, ZHAO Y N, FAN X X, et al. Device⁃free identification using intrinsic CSI Features [J]. IEEE transactions on vehicular technology, 2018, 67(9): 8571–8581. DOI:10.1109/tvt.2018.2853185
DOI |
3 |
MA Y S, ZHOU G, WANG S Q. WiFi sensing with channel state information [J]. ACM computing surveys, 2019, 52(3): 1–36. DOI:10.1145/3310194
DOI |
4 |
HALPERIN D, HU W J, SHETH A, et al. Tool release [J]. ACM SIGCOMM computer communication review, 2011, 41(1): 53. DOI:10.1145/1925861.1925870
DOI |
5 |
HE W F, WU K S, ZOU Y P, et al. WiG: WiFi⁃based gesture recognition system [C]//2015 24th International Conference on Computer Communication and Networks (ICCCN). Las Vegas, USA, 2015: 1–7. DOI:10.1109/icccn.2015.7288485
DOI |
6 |
LI H, YANG W, WANG J X, et al. WiFinger: talk to your smart devices with finger⁃grained gesture [C]//The 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, USA, 2016: 250–261. DOI:10.1145/2971648.2971738
DOI |
7 |
WANG Y, YANG J, CHEN Y Y, et al. Tracking human queues using single⁃point signal monitoring [C]//Annual International Conference on Mobile Systems, Applications, and Services. New Hampshire, USA, 2014:42–54. DOI: 10.1145/2594368.2594382
DOI |
8 |
MA Y S, ZHOU G, WANG S Q, et al. SignFi: sign language recognition using Wi⁃Fi [J]. ACM on interactive, mobile, wearable and ubiquitous technologies, 2018, 2(1): 1–21. DOI:10.1145/3191755
DOI |
9 |
OHARA K, MAEKAWA T, MATSUSHITA Y. Detecting state changes of indoor everyday objects using Wi⁃Fi channel state information [J]. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2017, 1(3): 1–28. DOI:10.1145/3131898
DOI |
10 |
SINGH U, DETERME J F, HORLIN F, et al. Crowd forecasting based on wifi sensors and lstm neural networks [J]. IEEE transactions on instrumentation and measurement, 2020: 1. DOI:10.1109/tim.2020.2969588
DOI |
11 |
BAHL P, PADMANABHAN V N. Radar: an in⁃building RF⁃based user location and tracking system [C]//19th Annual Joint Conference of the IEEE Computer and Communications Societies. Tel Aviv, Israel, 2000:775–784.DOI:10.1109/infcom.2000.832252
DOI |
12 |
KOTARU M, JOSHI K, BHARADIA D, et al. SpotFi: decimeter level localization using Wi⁃Fi [J]. ACM SIGCOMM Computer communication review, 2015, 45(4): 269–282. DOI:10.1145/2829988.2787487
DOI |
13 |
SCHMIDT R. Multiple emitter location and signal parameter estimation [J]. IEEE transactions on antennas and propagation, 1986, 34(3): 276–280. DOI:10.1109/tap.1986.1143830
DOI |
14 | VASISHT D, KUMAR S, KATABI D. Decimeter⁃level localization with a single Wi⁃Fi access point [C]//The 13th USENIX Symposium on Networked Systems Design and Implementation. Santa Clara, USA, 2016: 165–178 |
15 |
QIAN K, WU C S, YANG Z, et al. Widar: decimeter⁃level passive tracking via velocity monitoring with commodity Wi⁃Fi [C]//ACM Mobihoc 2017. Chennai, India, 2017: 1–10. DOI: http://dx.doi.org/10.1145/3084041.3084067
DOI |
16 |
QIAN K, WU C S, ZHANG Y, et al. Widar 2.0: passive human tracking with a single Wi⁃Fi link [C]//The 16th Annual International Conference on Mobile Systems. Applications, and Services. New York, USA, 2018: 1–12. DOI:10.1145/3210240.3210314
DOI |
17 |
LU G Y, SONG J K. 3D image⁃based indoor localization joint with WiFi positioning [C]// ACM on International Conference on Multimedia Retrieval. New York, USA, 2018: 1–8. DOI:10.1145/3206025.3206070
DOI |
18 |
GUO A Y, XU Z M, CHEN L Q. A human action recognition method based on Wi⁃Fi channel state information [J]. Chinese journal of sensors and actuators, 2019, 32(11): 1688–1693. DOI: 10.3969 /j.issn.1004-1699.2019.11.015
DOI |
19 |
BU Q R, YANG G, MING X X, et al. Deep transfer learning for gesture recognition with WiFi signals [J]. Personal and ubiquitous computing, 2020. DOI:10.1007/s00779-019-01360-8
DOI |
20 |
ARSHAD S, FENG C H, YU R Y, et al. Leveraging transfer learning in multiple human activity recognition using WiFi signal [C]//2019 IEEE 20th International Symposium on “A World of Wireless, Mobile and Multimedia Networks”. Washington, USA, 2019: 1–10. DOI:10.1109/wowmom.2019.8793019
DOI |
21 |
WANG H, ZHANG D Q, MA J Y, et al. Human respiration detection with commodity Wi⁃Fi devices [C]//ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, USA, 2016: 25–36. DOI:10.1145/2971648.2971744
DOI |
22 |
ZENG Y Z, PATHAK P H, MOHAPATRA P. WiWho: WiFi⁃based person identification in smart spaces [C]//15th ACM/IEEE International Conference on Information Processing in Sensor Networks. Vienna, Austria, 2016: 1–12. DOI: 10.1109/ipsn.2016.7460727
DOI |
23 |
ZHANG J, WEI B, HU W, et al. WiFi⁃ID: human identification using WiFi signal [C]//2016 International Conference on Distributed Computing in Sensor Systems. Washington, USA, 2016: 1–8. DOI:10.1109/dcoss.2016.30
DOI |
24 |
HONG F, WANG X, YANG Y N, et al. WFID: passive device⁃free human identification using Wi⁃Fi signal [C]//Mobiquitous’16. Hiroshima, Japan, 2016: 1⁃10. DOI: http://dx.doi.org/10.1145/2994374.2994377
DOI |
25 |
WANG W, LIU A X, SHAHZAD M. Gait recognition using Wi⁃Fi signals [C]// UbiComp ’16. Heidelberg, Germany, 2016: 363–373. DOI: http://dx.doi.org/10.1145/2971648.2971670
DOI |
26 |
WANG J, GAO Q H, PAN M, et al. Device⁃free wireless sensing: challenges, opportunities, and applications [J]. IEEE network, 2018, 32(2):132–137. DOI: 10.1109/MNET.2017.1700133
DOI |
27 |
WANG W, LIU A X, SHAHZAD M, et al. Understanding and modeling of Wi⁃Fi signal based human activity recognition [C]//MobiCom’15. Paris, France, 2015: 65–76. DOI: http://dx.doi.org/10.1145/2789168.2790093
DOI |
28 | YANG Z, ZHENG Y, WU C S. Intelligent wireless sensing in the AIoT: features, algorithms, and data sets [J]. Communications of the CCF, 2020, 16(2): 50–56 |
29 |
ZHENG Y, ZHANG Y, QIAN K, et al. Zero⁃effort cross⁃domain gesture recognition with Wi⁃Fi [C]//17th Annual International Conference on Mobile Systems, Applications, and Services. New York, USA: 2019. DOI:10.1145/3307334.3326081
DOI |
30 |
WANG J, GAO Q H, MA X R, et al. Learning to sense: deep learning for wireless sensing with less training efforts [J]. IEEE wireless communications, 2020, 27(3): 156–162. DOI:10.1109/mwc.001.1900409
DOI |
[1] | DENG Letian, ZHAO Yanru. Deep Learning-Based Semantic Feature Extraction: A Literature Review and Future Directions [J]. ZTE Communications, 2023, 21(2): 11-17. |
[2] | LI Daiyi, TU Yaofeng, ZHOU Xiangsheng, ZHANG Yangming, MA Zongmin. End-to-End Chinese Entity Recognition Based on BERT-BiLSTM-ATT-CRF [J]. ZTE Communications, 2022, 20(S1): 27-35. |
[3] | LI Zhongya, CHEN Rui, HUANG Xingang, ZHANG Junwen, NIU Wenqing, LU Qiuyi, CHI Nan. SVM for Constellation Shaped 8QAM PON System [J]. ZTE Communications, 2022, 20(S1): 64-71. |
[4] | ZHAO Zipiao, ZHAO Yongli, YAN Boyuan, WANG Dajiang. Auxiliary Fault Location on Commercial Equipment Based on Supervised Machine Learning [J]. ZTE Communications, 2022, 20(S1): 7-15. |
[5] | GAO Zhengguang, LI Lun, WU Hao, TU Xuezhen, HAN Bingtao. A Unified Deep Learning Method for CSI Feedback in Massive MIMO Systems [J]. ZTE Communications, 2022, 20(4): 110-115. |
[6] | XU Yongjun, YANG Zhaohui, HUANG Chongwen, YUEN Chau, GUI Guan. Resource Allocation for Two‑Tier RIS‑Assisted Heterogeneous NOMA Networks [J]. ZTE Communications, 2022, 20(1): 36-47. |
[7] | LIU Junyu, YANG Yongjian, WANG En. BPPF: Bilateral Privacy-Preserving Framework for Mobile Crowdsensing [J]. ZTE Communications, 2021, 19(2): 20-28. |
[8] | JI Hong, ZHANG Tianxiang, ZHANG Kai, WANG Wanyuan, WU Weiwei. Efficient Network Slicing with Dynamic Resource Allocation [J]. ZTE Communications, 2021, 19(1): 11-19. |
[9] | DENG Xu, ZHU Lidong. Resource Allocation Strategy Based on Matching Game [J]. ZTE Communications, 2020, 18(4): 10-17. |
[10] | JIANG Zhihui, HE Yinghui, YU Guanding. Joint User Selection and Resource Allocation for Fast Federated Edge Learning [J]. ZTE Communications, 2020, 18(2): 20-30. |
[11] | SUN Lin, DU Jiangbing, HUA Feng, TANG Ningfeng, HE Zuyuan. Adaptive and Intelligent Digital Signal Processing for Improved Optical Interconnection [J]. ZTE Communications, 2020, 18(2): 57-73. |
[12] | ZHANG Pengyu, XIE Lifeng, XU Jie. Joint Placement and Resource Allocation for UAV-Assisted Mobile Edge Computing Networks with URLLC [J]. ZTE Communications, 2020, 18(2): 49-56. |
[13] | WANG Jia, ZHAO Yilong, HUANG Xin, HE Guangqiang. High Speed Polarization-Division Multiplexing Transmissions Based on the Nonlinear Fourier Transform [J]. ZTE Communications, 2019, 17(3): 50-55. |
[14] | FENG Hong, LI Xi, ZHANG Heli, CHEN Shuying, JI Hong. Energy-Efficient Wireless Backhaul Algorithm in Ultra-Dense Networks [J]. ZTE Communications, 2018, 16(2): 16-22. |
[15] | JIN Yaqi, XU Xiaodong, TAO Xiaofeng. Multi-QoS Guaranteed Resource Allocation for Multi-Services Based on Opportunity Costs [J]. ZTE Communications, 2018, 16(2): 9-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||