ZTE Communications ›› 2022, Vol. 20 ›› Issue (4): 110-115.DOI: 10.12142/ZTECOM.202204013
• Research Paper • Previous Articles Next Articles
GAO Zhengguang1(), LI Lun1, WU Hao1, TU Xuezhen2, HAN Bingtao1
Received:
2021-11-15
Online:
2022-12-31
Published:
2022-12-30
About author:
GAO Zhengguang (GAO Zhengguang, LI Lun, WU Hao, TU Xuezhen, HAN Bingtao. A Unified Deep Learning Method for CSI Feedback in Massive MIMO Systems[J]. ZTE Communications, 2022, 20(4): 110-115.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202204013
Dataset | Method | 1/4 | 1/8 | 1/15 | |||
---|---|---|---|---|---|---|---|
NMSE | GCS | NMSE | GCS | NMSE | GCS | ||
Data1 | ACRNet+ | -7.22 | 0.887 9 | -5.10 | 0.813 4 | -3.865 | 0.746 2 |
ACRNetH | -6.59 | 0.870 0 | -4.70 | 0.795 8 | -3.44 | 0.722 8 | |
Data2 | ACRNet+ | -14.10 | 0.976 5 | -9.78 | 0.937 5 | -6.61 | 0.875 4 |
ACRNetH | -12.38 | 0.966 1 | -8.07 | 0.910 5 | -5.82 | 0.850 9 | |
Data3 | ACRNet+ | -12.62 | 0.969 8 | -8.001 | 0.911 4 | -5.678 | 0.844 9 |
ACRNetH | -9.84 | 0.943 | -6.812 | 0.882 5 | -4.795 | 0.810 5 |
Table 1 Comparison between ACRNet+ and ACRNetH under the same compression ratio
Dataset | Method | 1/4 | 1/8 | 1/15 | |||
---|---|---|---|---|---|---|---|
NMSE | GCS | NMSE | GCS | NMSE | GCS | ||
Data1 | ACRNet+ | -7.22 | 0.887 9 | -5.10 | 0.813 4 | -3.865 | 0.746 2 |
ACRNetH | -6.59 | 0.870 0 | -4.70 | 0.795 8 | -3.44 | 0.722 8 | |
Data2 | ACRNet+ | -14.10 | 0.976 5 | -9.78 | 0.937 5 | -6.61 | 0.875 4 |
ACRNetH | -12.38 | 0.966 1 | -8.07 | 0.910 5 | -5.82 | 0.850 9 | |
Data3 | ACRNet+ | -12.62 | 0.969 8 | -8.001 | 0.911 4 | -5.678 | 0.844 9 |
ACRNetH | -9.84 | 0.943 | -6.812 | 0.882 5 | -4.795 | 0.810 5 |
1 |
LU L, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO: benefits and challenges [J]. IEEE journal of selected topics in signal processing, 2014, 8(5): 742–758. DOI: 10.1109/JSTSP.2014.2317671
DOI |
2 |
MARZETTA T L. Massive MIMO: an introduction [J]. Bell labs technical journal, 2015, 20: 11–22. DOI: 10.15325/BLTJ.2015.2407793
DOI |
3 |
WU H Q. Ten reflections on 5G [J]. ZTE technology journal, 2020, 26(1): 2–4. DOI: 10.12142/ZTECOM.202001001
DOI |
4 |
FANG M, DUAN X Y, HU L J. Challenges, innovations and perspectives towards 6G [J]. ZTE technology journal, 2020, 26(3): 61–70. DOI: 10.12142/ ZTETJ.202003012
DOI |
5 |
WANG X Y. 5G: striving for sustainable growth amid expectations [J]. ZTE technology journal, 2020, 26(1): 64–66. DOI: 10.12142/ZTETJ.202001014
DOI |
6 |
GAO Z, DAI L L, WANG Z C, et al. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO [J]. IEEE transactions on signal processing, 2015, 63(23): 6169–6183. DOI: 10.1109/TSP.2015.2463260
DOI |
7 |
KUO P H, KUNG H T, TING P G. Compressive sensing based channel feedback protocols for spatially-correlated massive antenna arrays [C]//Proceedings of 2012 IEEE Wireless Communications and Networking Conference. IEEE, 2012: 492–497. DOI: 10.1109/WCNC.2012.6214417
DOI |
8 |
LU L, LI G Y, QIAO D L, et al. Sparsity-enhancing basis for compressive sensing based channel feedback in massive MIMO systems [C]//Proceedings of 2015 IEEE Global Communications Conference. IEEE, 2015: 1–6. DOI: 10.1109/GLOCOM.2015.7417036
DOI |
9 |
DAUBECHIES I, DEFRISE M, DE MOL C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. Communications on pure and applied mathematics, 2004, 57(11): 1413–1457. DOI: 10.1002/cpa.20042
DOI |
10 |
KONG Q L, GONG R, LIU J T, et al. Investigation on reconstruction for frequency domain photoacoustic imaging via TVAL3 regularization algorithm [J]. IEEE photonics journal, 2018, 10(5): 1–15. DOI: 10.1109/JPHOT.2018.2869815
DOI |
11 |
METZLER C A, MALEKI A, BARANIUK R G. From denoising to compressed sensing [J]. IEEE transactions on information theory, 2016, 62(9): 5117–5144. DOI: 10.1109/TIT.2016.2556683
DOI |
12 | GAO Z, YAN S, ZHANG J, et al. ANN-based multi-channel QoT-prediction over a 563.4 km field-trial testbed [J]. Journal of lightwave technology, 2020, 38 (9): 2646–2655 |
13 |
GAO Z G, ZHANG J W, YAN S Y, et al. Deep reinforcement learning for BBU placement and routing in C-RAN [C]//Proceedings of Optical Fiber Communication Conference (OFC). OSA, 2019: 1–3. DOI: 10.1364/ofc.2019.w2a.22
DOI |
14 |
WEN C K, SHIH W T, JIN S. Deep learning for massive MIMO CSI feedback [J]. IEEE wireless communications letters, 2018, 7(5): 748–751. DOI: 10.1109/LWC.2018.2818160
DOI |
15 |
WANG T Q, WEN C K, JIN S, et al. Deep learning-based CSI feedback approach for time-varying massive MIMO channels [J]. IEEE wireless communications letters, 2019, 8(2): 416–419. DOI: 10.1109/LWC.2018.2874264
DOI |
16 |
LIU F, HE X C, LI C G, et al. CsiNet-plus model with truncation and noise on CSI feedback [J]. IEICE transactions on fundamentals of electronics, communications and computer sciences, 2020, E103.A(1): 376–381. DOI: 10.1587/transfun.2019eal2123
DOI |
17 |
LU Z L, WANG J T, SONG J. Multi-resolution CSI feedback with deep learning in massive MIMO system [C]//Proceedings of ICC 2020–2020 IEEE International Conference on Communications. IEEE, 2020: 1–6. DOI: 10.1109/ICC40277.2020.9149229
DOI |
18 |
LU Z L, ZHANG X D, HE H Y, et al. Binarized aggregated network with quantization: flexible deep learning deployment for CSI feedback in massive MIMO system [EB/OL]. [2021-10-01]. . DOI: 10.1109/TWC.2022.3141653
DOI URL |
19 |
LIU L F, OESTGES C, POUTANEN J, et al. The COST 2100 MIMO channel model [J]. IEEE wireless communications, 2012, 19(6): 92–99. DOI: 10.1109/mwc.2012.6393523
DOI |
20 |
STUBER G L, BARRY J R, MCLAUGHLIN S W, et al. Broadband MIMO-OFDM wireless communications [J]. Proceedings of the IEEE, 2004, 92(2): 271–294. DOI: 10.1109/JPROC.2003.821912
DOI |
21 | RASHEED M H, SALIH O M, SIDDEQ M M, et al. Image compression based on 2D discrete Fourier transform and matrix minimization algorithm [EB/OL]. [2021-10-01]. |
22 |
WANG Y S, YAO H X, ZHAO S C. Auto-encoder based dimensionality reduction [J]. Neurocomputing, 2016, 184: 232–242. DOI: 10.1016/j.neucom.2015.08.104
DOI |
23 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84–90. DOI: 10.1145/3065386
DOI |
24 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016: 770–778. DOI: 10.1109/CVPR.2016.90
DOI |
25 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]//Proceedings of the European Conference on Computer Vision. ECCV, 2018: 3–19. DOI: 10.1007/978-3-030-01234-2_1
DOI |
26 | 3GPP. Study on channel model for frequencies from 0.5 to 100 GHz: TR 38.901 [S]. 2017 |
[1] | WANG Chongchong, LI Yao, WANG Beibei, CAO Hong, ZHANG Yanyong. Point Cloud Processing Methods for 3D Point Cloud Detection Tasks [J]. ZTE Communications, 2023, 21(4): 38-46. |
[2] | GONG Panyin, ZHANG Guidong, ZHANG Zhigang, CHEN Xiao, DING Xuan. Research on Fall Detection System Based on Commercial Wi-Fi Devices [J]. ZTE Communications, 2023, 21(4): 60-68. |
[3] | DENG Letian, ZHAO Yanru. Deep Learning-Based Semantic Feature Extraction: A Literature Review and Future Directions [J]. ZTE Communications, 2023, 21(2): 11-17. |
[4] | LU Ping, SHENG Bin, SHI Wenzhe. Scene Visual Perception and AR Navigation Applications [J]. ZTE Communications, 2023, 21(1): 81-88. |
[5] | FAN Guotian, WANG Zhibin. Intelligent Antenna Attitude Parameters Measurement Based on Deep Learning SSD Model [J]. ZTE Communications, 2022, 20(S1): 36-43. |
[6] | ZHANG Jintao, HE Zhenqing, RUI Hua, XU Xiaojing. Spectrum Sensing for OFDMA Using Multicarrier Covariance Matrix Aware CNN [J]. ZTE Communications, 2022, 20(3): 61-69. |
[7] | HE Hongye, YANG Zhiguo, CHEN Xiangning. Payload Encoding Representation from Transformer for Encrypted Traffic Classification [J]. ZTE Communications, 2021, 19(4): 90-97. |
[8] | CHEN Liangqin, TIAN Liping, XU Zhimeng, CHEN Zhizhang. A Survey of Wi-Fi Sensing Techniques with Channel State Information [J]. ZTE Communications, 2020, 18(3): 57-63. |
[9] | XUE Songyan, LI Ang, WANG Jinfei, YI Na, MA Yi, Rahim TAFAZOLLI, Terence DODGSON. To Learn or Not to Learn:Deep Learning Assisted Wireless Modem Design [J]. ZTE Communications, 2019, 17(4): 3-11. |
[10] | ZHENG Xiaoqing, LU Yaping, PENG Haoyuan, FENG Jiangtao, ZHOU Yi, JIANG Min, MA Li, ZHANG Ji, JI Jie. Detecting Abnormal Start-Ups, Unusual Resource Consumptions of the Smart Phone: A Deep Learning Approach [J]. ZTE Communications, 2019, 17(2): 38-43. |
[11] | ZHENG Xiaoqing, CHEN Jun, SHANG Guoqiang. Deep Neural Network-Based Chinese Semantic Role Labeling [J]. ZTE Communications, 2017, 15(S2): 58-64. |
[12] | Biao He, Xiangyun Zhou, and Thushara D. Abhayapala. Wireless Physical Layer Security with Imperfect Channel State Information: A Survey [J]. ZTE Communications, 2013, 11(3): 11-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||