ZTE Communications ›› 2023, Vol. 21 ›› Issue (1): 81-88.DOI: 10.12142/ZTECOM.202301010
• Research Paper • Previous Articles Next Articles
LU Ping1,2, SHENG Bin2(), SHI Wenzhe1,2
Received:
2022-11-01
Online:
2023-03-25
Published:
2024-03-15
About author:
LU Ping is the Vice President and general manager of the Industrial Digitalization Solution Department of ZTE Corporation, and Executive Deputy Director of the National Key Laboratory of Mobile Network and Mobile Multimedia Technology. His research directions include cloud computing, big data, augmented reality, and multimedia service-based technologies. He has supported and participated in major national science and technology projects and national science and technology support projects. He has published multiple papers, and authored two books.Supported by:
LU Ping, SHENG Bin, SHI Wenzhe. Scene Visual Perception and AR Navigation Applications[J]. ZTE Communications, 2023, 21(1): 81-88.
Figure 2 Result of dense reconstruction: (a) photometric depth map, (b) photometric normal map, (c) geometric depth map, (d) geometric normal map, and (e) dense reconstruction effect
1 | LI H Q, LI L, LI Z. A review of point cloud compression [J]. ZTE technology journal, 2021, 27( 1): 5– 9. DOI: 10.12142/ZTETJ.202101003 |
2 | CAO M, WEI J, LYU Z, et al. Fast and robust feature tracking for 3D reconstruction [J]. Optics & laser technology, 2019, 110: 120– 128. DOI: 10.1016/j.optlastec.2018.05.036 |
3 | LINDENBERGER P, SARLIN P E, LARSSON V, et al. Pixel-perfect structure-from-motion with featuremetric refinement [C]// Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. IEEE, 2022: 5967– 5977. DOI: 10.1109/ICCV48922.2021.00593 |
4 | YI K M, TRULLS E, LEPETIT V, et al. LIFT: learned invariant feature transform [C]// European Conference on Computer Vision. ECCV, 2016: 467– 483. DOI: 10.1007/978-3-319-46466-4_28 |
5 | ZHANG X, YU F X, KARAMAN S, et al. Learning discriminative and transformation covariant local feature detectors [C]// Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 4923– 4931. DOI: 10.1109/CVPR.2017.523 |
6 | ZHANG L G, RUSINKIEWICZ S. Learning to detect features in texture images [C]// Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 6325– 6333. DOI: 10.1109/CVPR.2018.00662 |
7 | DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint: self-supervised interest point detection and description [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2018: 224– 236. DOI: 10.1109/CVPRW.2018.00060 |
8 | LAGUNA A B, RIBA E, PONSA D, et al. Key.Net: keypoint detection by handcrafted and learned CNN filters [C]// International Conference on Computer Vision (ICCV). IEEE, 2020: 5835– 5843. DOI: 10.1109/ICCV.2019.00593 |
9 | ONO Y, TRULLS E, FUA P, et al. LF-Net: Learning local features from images [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. ACM, 2018: 6237– 6247. DOI: 10.5555/3327345.3327521 |
10 | SCHÖNBERGER J L, HARDMEIER H, SATTLER T, et al. Comparative evaluation of hand-crafted and learned local features [C]// Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 6959– 6968. DOI: 10.1109/CVPR.2017.736 |
11 | WANG J, ZHOU F, WEN S L, et al. Deep metric learning with angular loss [C]// International Conference on Computer Vision. IEEE, 2017: 2612– 2620. DOI: 10.1109/ICCV.2017.283 |
12 | ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks [C]// Conference on Computer Vision and Pattern Recognition. IEEE, 2015: 4353– 4361. DOI: 10.1109/CVPR.2015.7299064 |
13 | LUO Z X, SHEN T W, ZHOU L, et al. ContextDesc: local descriptor augmentation with cross-modality context [C]// Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 2522– 2531. DOI: 10.1109/CVPR.2019.00263 |
14 | TIAN Y R, YU X, FAN B, et al. SOSNet: second order similarity regularization for local descriptor learning [C]// Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 11008– 11017. DOI: 10.1109/CVPR.2019.01127 |
15 | SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: learning feature matching with graph neural networks [C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 4937– 4946. DOI: 10.1109/CVPR42600.2020.00499 |
16 | SUN J M, SHEN Z H, WANG Y A, et al. LoFTR: detector-free local feature matching with transformers [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021: 8918– 8927. DOI: 10.1109/CVPR46437.2021.00881 |
17 | SARLIN P E, CADENA C, SIEGWART R, et al. From coarse to fine: robust hierarchical localization at large scale [C]// Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 12708– 12717. DOI: 10.1109/CVPR.2019.01300 |
18 | LU P, SHENG B, ZHU F. Next-generation communications technology facilitates real-time distributed cloud rendering [J]. ZTE technology journal, 2021, 27( 1): 17– 20. DOI: 10.12142/ZTETJ.202101005 |
19 | LU P, OUYANG X Z, GAO W W. Capacity improvement and practice of 5G industry virtual private network [J]. ZTE technology journal, 2022, 28( 2): 68– 74. DOI: 10.12142/ZTETJ.202202011 |
[1] | LU Ping, SHI Wenzhe, QIAO Xiuquan. Multi-View Image-Based 3D Reconstruction in Indoor Scenes: A Survey [J]. ZTE Communications, 2024, 22(3): 91-98. |
[2] | WANG Chongchong, LI Yao, WANG Beibei, CAO Hong, ZHANG Yanyong. Point Cloud Processing Methods for 3D Point Cloud Detection Tasks [J]. ZTE Communications, 2023, 21(4): 38-46. |
[3] | GONG Panyin, ZHANG Guidong, ZHANG Zhigang, CHEN Xiao, DING Xuan. Research on Fall Detection System Based on Commercial Wi-Fi Devices [J]. ZTE Communications, 2023, 21(4): 60-68. |
[4] | DENG Letian, ZHAO Yanru. Deep Learning-Based Semantic Feature Extraction: A Literature Review and Future Directions [J]. ZTE Communications, 2023, 21(2): 11-17. |
[5] | FAN Guotian, WANG Zhibin. Intelligent Antenna Attitude Parameters Measurement Based on Deep Learning SSD Model [J]. ZTE Communications, 2022, 20(S1): 36-43. |
[6] | GAO Zhengguang, LI Lun, WU Hao, TU Xuezhen, HAN Bingtao. A Unified Deep Learning Method for CSI Feedback in Massive MIMO Systems [J]. ZTE Communications, 2022, 20(4): 110-115. |
[7] | ZHANG Jintao, HE Zhenqing, RUI Hua, XU Xiaojing. Spectrum Sensing for OFDMA Using Multicarrier Covariance Matrix Aware CNN [J]. ZTE Communications, 2022, 20(3): 61-69. |
[8] | HE Hongye, YANG Zhiguo, CHEN Xiangning. Payload Encoding Representation from Transformer for Encrypted Traffic Classification [J]. ZTE Communications, 2021, 19(4): 90-97. |
[9] | XUE Songyan, LI Ang, WANG Jinfei, YI Na, MA Yi, Rahim TAFAZOLLI, Terence DODGSON. To Learn or Not to Learn:Deep Learning Assisted Wireless Modem Design [J]. ZTE Communications, 2019, 17(4): 3-11. |
[10] | ZHENG Xiaoqing, LU Yaping, PENG Haoyuan, FENG Jiangtao, ZHOU Yi, JIANG Min, MA Li, ZHANG Ji, JI Jie. Detecting Abnormal Start-Ups, Unusual Resource Consumptions of the Smart Phone: A Deep Learning Approach [J]. ZTE Communications, 2019, 17(2): 38-43. |
[11] | ZHENG Xiaoqing, CHEN Jun, SHANG Guoqiang. Deep Neural Network-Based Chinese Semantic Role Labeling [J]. ZTE Communications, 2017, 15(S2): 58-64. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 65
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||