ZTE Communications ›› 2022, Vol. 20 ›› Issue (3): 3-16.doi: 10.12142/ZTECOM.202203002
• Special Topic • Previous Articles Next Articles
NAN Yucen1(), FANG Minghao2, ZOU Xiaojing2, DOU Yutao3, ZOMAYA Albert Y.3
Received:
2022-06-10
Online:
2022-09-13
Published:
2022-09-14
About author:
NAN Yucen (NAN Yucen, FANG Minghao, ZOU Xiaojing, DOU Yutao, Albert Y. ZOMAYA. A Collaborative Medical Diagnosis System Without Sharing Patient Data[J]. ZTE Communications, 2022, 20(3): 3-16.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Feature abbreviation checklist within complete blood count (CBC) test"
Abbreviation | Full Name |
---|---|
EON (#) | Eosinophils (#) |
EON (%) | Eosinophils (%) |
EOP (#) | Basophils (#) |
EOP (%) | Basophils (%) |
HCT | Hematocrit |
HGB | Hemoglobin |
LYM (#) | Lymphocyte (#) |
LYM (%) | Lymphocyte (%) |
MCH | Mean corpuscular hemoglobin |
MCHC | Mean corpuscular hemoglobin concentration |
MCV | Mean corpuscular volume |
MONON (#) | Monocyte (#) |
MONON (%) | Monocyte (%) |
MPV | Mean platelet volume |
NEU (#) | Neutrophils (#) |
NEU (%) | Neutrophils (%) |
PCT | Procalcitonin |
PDW | Platelet distribution width |
P-LCR | Platelet-large cell ratio |
PLT | Platelet |
RBC | Red blood cell |
RDW-CV | Red blood cell distribution width CV |
RDW-SD | Red blood cell distribution width SD |
WBC | White blood cell |
1 |
SILVA D B DA, SCHMIDT D, COSTA C A DA, et al. DeepSigns: a predictive model based on deep learning for the early detection of patient health deterioration [J]. Expert systems with applications, 2021, 165: 113905. DOI: 10.1016/j.eswa.2020.113905
doi: 10.1016/j.eswa.2020.113905 |
2 |
YE B, YUAN X X, CAI Z C, et al. Severity assessment of COVID-19 based on feature extraction and V-descriptors [J]. IEEE transactions on industrial informatics, 2021, 17(11): 7456–7467. DOI: 10.1109/TII.2021.3056386
doi: 10.1109/TII.2021.3056386 |
3 |
NAPI N M, ZAIDAN A A, ZAIDAN B B, et al. Medical emergency triage and patient prioritisation in a telemedicine environment: a systematic review [J]. Health and technology, 2019, 9(5): 679–700. DOI: 10.1007/s12553-019-00357-w
doi: 10.1007/s12553-019-00357-w |
4 |
CORDERO A, GARCÍA-ACUÑA J M, RODRÍGUEZ-MAÑERO M, et al. Prevalence, long-term prognosis and medical alternatives for patients admitted for acute coronary syndromes and prasugrel contraindication [J]. International journal of cardiology, 2018, 270: 36–41. DOI: 10.1016/j.ijcard.2018.06.057
doi: 10.1016/j.ijcard.2018.06.057 |
5 |
FERRONI P, ZANZOTTO F M, RIONDINO S, et al. Breast cancer prognosis using a machine learning approach [J]. Cancers, 2019, 11(3): 328. DOI: 10.3390/cancers11030328
doi: 10.3390/cancers11030328 |
6 | CHOUDHURY O, GKOULALAS-DIVANIS A, SALONIDIS T, et al. Differential Privacy-enabled Federated Learning for Sensitive Health Data [EB/OL]. (2019-10-07)[2022-02-28]. |
7 |
LIANG W, LI K C, LONG J, et al. An industrial network intrusion detection algorithm based on multifeature data clustering optimization model [J]. IEEE transactions on industrial informatics, 2020, 16(3): 2063–2071. DOI: 10.1109/TII.2019.2946791
doi: 10.1109/TII.2019.2946791 |
8 | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. AISTATS, 2017 |
9 | LI L, FAN Y X, TSE M, et al. A review of applications in federated learning [J]. Computers & industrial Engineering, 2020, 149: 106854 |
10 |
LI T, SAHU A K, TALWALKAR A, et al. Federated learning: challenges, methods, and future directions [J]. IEEE signal processing magazine, 2020, 37(3): 50–60. DOI: 10.1109/MSP.2020.2975749
doi: 10.1109/MSP.2020.2975749 |
11 |
BRISIMI T S, CHEN R D, MELA T, et al. Federated learning of predictive models from federated Electronic Health Records [J]. International journal of medical informatics, 2018, 112: 59–67. DOI: 10.1016/j.ijmedinf.2018.01.007
doi: 10.1016/j.ijmedinf.2018.01.007 |
12 |
KAISSIS G A, MAKOWSKI M R, RÜCKERT D, et al. Secure, privacy-preserving and federated machine learning in medical imaging [J]. Nature machine intelligence, 2020, 2(6): 305–311. DOI: 10.1038/s42256-020-0186-1
doi: 10.1038/s42256-020-0186-1 |
13 |
DOSILOVIC F K, BRCIC M, HLUPIC N. Explainable artificial intelligence: a survey [C]//Proceedings of 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2018. DOI: 10.23919/mipro.2018.8400040
doi: 10.23919/mipro.2018.8400040 |
14 | LUNDBERG S, LEE S I. A unified approach to interpreting model predictions [EB/OL]. [2022-02-28]. |
15 |
STOJIĆ A, STANIĆ N, VUKOVIĆ G, et al. Explainable extreme gradient boosting tree-based prediction of toluene, ethylbenzene and xylene wet deposition [J]. Science of the total environment, 2019, 653: 140–147. DOI: 10.1016/j.scitotenv.2018.10.368
doi: 10.1016/j.scitotenv.2018.10.368 |
16 |
NAN Y C, LI W, LU F, et al. Developing practical multi-view learning for clinical analytics in P4 medicine [J]. IEEE transactions on emerging topics in computing, 2021: 1. DOI: 10.1109/tetc.2021.3054761
doi: 10.1109/tetc.2021.3054761 |
17 |
RIEKE N, HANCOX J, LI W Q, et al. The future of digital health with federated learning [J]. NPJ digital medicine, 2020, 3(1): 119. DOI: 10.1038/s41746-020-00323-1
doi: 10.1038/s41746-020-00323-1 |
18 |
SCHWARZ C G, KREMERS W K, THERNEAU T M, et al. Identification of anonymous MRI research participants with face-recognition software [J]. The New England journal of medicine, 2019, 381(17): 1684–1686. DOI: 10.1056/nejmc1908881
doi: 10.1056/nejmc1908881 |
19 |
SHELLER M J, EDWARDS B, REINA G A, et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data [J]. Scientific reports, 2020, 10(1): 12598. DOI: 10.1038/s41598-020-69250-1
doi: 10.1038/s41598-020-69250-1 |
20 |
SILVA S, GUTMAN B A, ROMERO E, et al. Federated learning in distributed medical databases: meta-analysis of large-scale subcortical brain data [C]//IEEE 16th International Symposium on Biomedical Imaging. IEEE, 2019: 270–274. DOI: 10.1109/ISBI.2019.8759317
doi: 10.1109/ISBI.2019.8759317 |
21 |
XU J, GLICKSBERG B S, SU C, et al. Federated learning for healthcare informatics [J]. Journal of healthcare informatics research, 2021, 5(1): 1–19. DOI: 10.1007/s41666-020-00082-4
doi: 10.1007/s41666-020-00082-4 |
22 | WANG G. Interpret federated learning with shapley values [EB/OL]. [2022-02-28]. |
23 |
RYZIN J V, BREIMAN L, FRIEDMAN J H, et al. Classification and regression trees [J]. Journal of the American statistical association, 1986, 81(393): 253. DOI: 10.2307/2288003
doi: 10.2307/2288003 |
24 |
CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016: 785–794. DOI: 10.1145/2939672.2939785
doi: 10.1145/2939672.2939785 |
25 | SHAPLEY L S. A value for n-person games [EB/OL]. [2022-02-28]. |
26 | LUNDBERG S M, ERION G G, LEE S I. Consistent individualized feature attribution for tree ensembles [EB/OL]. [2022-02-28]. |
27 | WHO. Coronavirus disease 2019 (COVID-19): situation report [R], Geneva, Switzerland: WHO, 2020 |
28 |
NOVAK V, HU K, DESROCHERS L, et al. Cerebral flow velocities during daily activities depend on blood pressure in patients with chronic ischemic infarctions [J]. Stroke, 2010, 41(1): 61–66. DOI: 10.1161/STROKEAHA.109.565556
doi: 10.1161/STROKEAHA.109.565556 |
29 |
FERRARI D, MOTTA A, STROLLO M, et al. Routine blood tests as a potential diagnostic tool for COVID-19 [J]. Clinical chemistry and laboratory medicine (CCLM), 2020, 58(7): 1095–1099. DOI: 10.1515/cclm-2020-0398
doi: 10.1515/cclm-2020-0398 |
30 | AN X S, LI X Y, SHANG F T, et al. Clinical characteristics and blood test results in COVID-19 patients [J]. Annals of clinical and laboratory science, 2020, 50(3): 299–307 |
[1] | HAN Xuming, GAO Minghan, WANG Limin, HE Zaobo, WANG Yanze. A Survey of Federated Learning on Non-IID Data [J]. ZTE Communications, 2022, 20(3): 17-26. |
[2] | LIU Qinbo, JIN Zhihao, WANG Jiabo, LIU Yang, LUO Wenjian. MSRA-Fed: A Communication-Efficient Federated Learning Method Based on Model Split and Representation Aggregate [J]. ZTE Communications, 2022, 20(3): 35-42. |
[3] | TANG Bo, ZHANG Chengming, WANG Kewen, GAO Zhengguang, HAN Bingtao. Neursafe-FL: A Reliable, Efficient, Easy-to- Use Federated Learning Framework [J]. ZTE Communications, 2022, 20(3): 43-53. |
[4] | SHI Wenqi, SUN Yuxuan, HUANG Xiufeng, ZHOU Sheng, NIU Zhisheng. Scheduling Policies for Federated Learning in Wireless Networks: An Overview [J]. ZTE Communications, 2020, 18(2): 11-19. |
[5] | YANG Howard H., ZHAO Zhongyuan, QUEK Tony Q. S.. Enabling Intelligence at Network Edge:An Overview of Federated Learning [J]. ZTE Communications, 2020, 18(2): 2-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||