ZTE Communications ›› 2022, Vol. 20 ›› Issue (4): 3-14.DOI: 10.12142/ZTECOM.202204002
• Special Topic • Previous Articles Next Articles
CAO Yinfeng(), CAO Jiannong, WANG Yuqin, WANG Kaile, LIU Xun
Received:
2022-09-16
Online:
2022-12-30
Published:
2022-12-30
About author:
CAO Yinfeng (Supported by:
CAO Yinfeng, CAO Jiannong, WANG Yuqin, WANG Kaile, LIU Xun. Security in Edge Blockchains: Attacks and Countermeasures[J]. ZTE Communications, 2022, 20(4): 3-14.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202204002
Figure 2 System architecture of a typical edge blockchain which follows a three-layer pattern with different blockchain components and functionalities
Components | Attacks | Countermeasures | Related Works |
---|---|---|---|
Blockchain management | Identity credential provider compromise | Decentralization and transparent identity management | Refs. [ |
Supply chain attack | Threat detection system and automated code analysis | Refs. [ | |
Blockchain consensus | Sharding-based consensus attack | Atomic commit and order-fairness consensus | Refs. [ |
DDoS on a memory pool | Increase of the costs of malicious transactions | Refs. [ | |
Insecure computation offloading | Secure multi-party computation | Refs. [ | |
Blockchain lightweight client | Key compromise | New recovery operations on blockchain and robust key management | Refs. [ |
Malicious full node | Reputation system and game-theoretic approach | Refs. [ |
Table 1 Attacks and countermeasures on edge blockchain components
Components | Attacks | Countermeasures | Related Works |
---|---|---|---|
Blockchain management | Identity credential provider compromise | Decentralization and transparent identity management | Refs. [ |
Supply chain attack | Threat detection system and automated code analysis | Refs. [ | |
Blockchain consensus | Sharding-based consensus attack | Atomic commit and order-fairness consensus | Refs. [ |
DDoS on a memory pool | Increase of the costs of malicious transactions | Refs. [ | |
Insecure computation offloading | Secure multi-party computation | Refs. [ | |
Blockchain lightweight client | Key compromise | New recovery operations on blockchain and robust key management | Refs. [ |
Malicious full node | Reputation system and game-theoretic approach | Refs. [ |
Figure 5 Bitcoin simplified payment verification (SPV): a lightweight blockchain client for Bitcoin, which only stores the block headers to reduce costs
1 |
CAO K Y, LIU Y F, MENG G J, et al. An overview on edge computing research [J]. IEEE access, 8: 85714–85728. DOI: 10.1109/ACCESS.2020.2991734
DOI |
2 |
HE Y, WANG Y H, QIU C, et al. Blockchain-based edge computing resource allocation in IoT: a deep reinforcement learning approach [J]. IEEE Internet of Things journal, 2021, 8(4): 2226–2237. DOI: 10.1109/JIOT.2020.3035437
DOI |
3 |
LU Y L, HUANG X H, DAI Y Y, et al. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT [J]. IEEE transactions on industrial informatics, 2020, 16(6): 4177–4186. DOI: 10.1109/TII.2019.2942190
DOI |
4 |
XU M R, NIYATO D, KANG J W, et al. Wireless edge-empowered metaverse: a learning-based incentive mechanism for virtual reality [C]//IEEE International Conference on Communications. IEEE, 2022: 5220–5225. DOI: 10.1109/ICC45855.2022.9838736
DOI |
5 |
SHENG H, WANG S, ZHANG Y, et al. Near-online tracking with co-occurrence constraints in blockchain-based edge computing [J]. IEEE Internet of Things journal, 2021, 8(4): 2193–2207. DOI: 10.1109/JIOT.2020.3035415
DOI |
6 | RAHMAN M A, HOSSAIN M S, LOUKAS G, et al. Blockchain-based mobile edge computing framework for secure therapy applications [J]. IEEE access, 2018, 6: 72469–72478 |
7 |
LI X Q, JIANG P, CHEN T, et al. A survey on the security of blockchain systems [J]. Future generation computer systems, 2020, 107: 841–853. DOI: 10.1016/j.future.2017.08.020
DOI |
8 |
TAYLOR P J, DARGAHI T, DEHGHANTANHA A, et al. A systematic literature review of blockchain cyber security [J]. Digital communications and networks, 2020, 6(2): 147–156. DOI: 10.1016/j.dcan.2019.01.005
DOI |
9 |
ZHANG R, XUE R, LIU L. Security and privacy on blockchain [J]. ACM computing surveys, 2020, 52(3): 1–34. DOI: 10.1145/3316481
DOI |
10 |
MONRAT A A, SCHELÉN O, ANDERSSON K. A survey of blockchain from the perspectives of applications, challenges, and opportunities [J]. IEEE access, 7: 117134–117151. DOI: 10.1109/ACCESS.2019.2936094
DOI |
11 |
ZHOU Q H, HUANG H W, ZHENG Z B, et al. Solutions to scalability of blockchain: a survey [J]. IEEE access, 8: 16440–16455. DOI: 10.1109/ACCESS.020.2967218
DOI |
12 |
YANG R Z, YU F R, SI P B, et al. Integrated blockchain and edge computing systems: a survey, some research issues and challenges [J]. IEEE communications surveys & tutorials, 2019, 21(2): 1508–1532. DOI: 10.1109/COMST.2019.2894727
DOI |
13 |
XIONG Z H, ZHANG Y, NIYATO D, et al. When mobile blockchain meets edge computing [J]. IEEE communications magazine, 2018, 56(8): 33–39. DOI: 10.1109/MCOM.2018.1701095
DOI |
14 |
MA Z F, WANG X C, JAIN D K, et al. A blockchain-based trusted data management scheme in edge computing [J]. IEEE transactions on industrial informatics, 2020, 16(3): 2013–2021. DOI: 10.1109/TII.2019.2933482
DOI |
15 |
KANG J W, YU R, HUANG X M, et al. Blockchain for secure and efficient data sharing in vehicular edge computing and networks [J]. IEEE Internet of Things journal, 2019, 6(3): 4660–4670. DOI: 10.1109/JIOT.2018.2875542
DOI |
16 |
NGUYEN D C, DING M, PHAM Q V, et al. Federated learning meets blockchain in edge computing: opportunities and challenges [J]. IEEE Internet of Things journal, 2021, 8(16): 12806–12825. DOI: 10.1109/jiot.2021.3072611
DOI |
17 |
MAJEED U, HONG C S. FLchain: federated learning via MEC-enabled blockchain network [C]//Proceedings of 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, 2019: 1–4. DOI: 10.23919/apnoms.2019.8892848
DOI |
18 | KIM W S. Edge computing server deployment technique for cloud VR-based multi-user metaverse content [J]. Journal of Korea multimedia society, 2021: 24(8): 1090–1100 |
19 | DHELIM S, KECHADI T, CHEN L, et al. Edge-enabled metaverse: The convergence of metaverse and mobile edge computing [EB/OL]. (2022-04-13) [2022-09-11]. |
20 | IBM. IBM blockchain service [EB/OL]. [2022-09-11]. |
21 | AWS. AWS blockchain-as-a-service [EB/OL]. [2022-09-11]. |
22 | ALIBABA. Alibaba blockchain solutions [EB/OL]. [2022-09-11]. |
23 | ORACLE. Oracle blockchain service [EB/OL]. [2022-09-11]. |
24 | WOOD G. Ethereum: a secure decentralised generalised transaction ledger [J]. Computer science, 2014 |
25 |
ANDROULAKI E, BARGER A, BORTNIKOV V, et al. Hyperledger fabric: a distributed operating system for permissioned blockchains [C]//Proceedings of the Thirteenth EuroSys Conference. ACM, 2018: 1–15. DOI: 10.1145/3190508.3190538
DOI |
26 | AZURE M. Azure blockchain service [EB/OL]. [2022-09-11]. |
27 |
WANG J, WU L B, CHOO K K R, et al. Blockchain-based anonymous authentication with key management for smart grid edge computing infrastructure [J]. IEEE transactions on industrial informatics, 2020, 16(3): 1984–1992. DOI: 10.1109/TII.2019.2936278
DOI |
28 |
ZHANG X D, LI R, CUI B. A security architecture of VANET based on blockchain and mobile edge computing [C]//Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). IEEE, 2018: 258–259. DOI: 10.1109/HOTICN.2018.8605952
DOI |
29 |
CHENG G J, CHEN Y, DENG S G, et al. A blockchain-based mutual authentication scheme for collaborative edge computing [J]. IEEE transactions on computational social systems, 2022, 9(1): 146–158. DOI: 10.1109/TCSS.2021.3056540
DOI |
30 | BROTSIS S, KOLOKOTRONIS N, LIMNIOTIS K, et al. On the security and privacy of hyperledger fabric: challenges and open issues [J]. IEEE world congress on services (SERVICES), 2020: 197–204 |
31 | DABHOLKAR A, SARASWAT V. Ripping the fabric: attacks and mitigations on hyperledger fabric [C]//International Conference on Applications and Techniques in Information Security. IEEE, 2019: 300–311 |
32 | DOCUMENTATION G. How to run a light node with geth [EB/OL]. [2022-09-11]. |
33 |
CASON D, FYNN E, MILOSEVIC N, et al. The design, architecture and performance of the tendermint blockchain network [C]//The 40th International Symposium on Reliable Distributed Systems (SRDS). IEEE, 2021: 23–33. DOI: 10.1109/SRDS53918.2021.00012
DOI |
34 |
CUI Z H, XUE F, ZHANG S Q, et al. A hybrid BlockChain-based identity authentication scheme for multi-WSN [J]. IEEE transactions on services computing, 2020, 13(2): 241–251. DOI: 10.1109/TSC.2020.2964537
DOI |
35 | ZHU S, CAI Z, HU H, et al. Zkcrowd: a hybrid blockchain-based crowdsourcing platform [J]. IEEE transactions on industrial informatics, 2019: 16(6): 4196–4205 |
36 |
TONG W, DONG X W, SHEN Y L, et al. CHChain: secure and parallel crowdsourcing driven by hybrid blockchain [J]. Future generation computer systems, 2022, 131: 279–291. DOI: 10.1016/j.future.2022.01.023
DOI |
37 | NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system [EB/OL]. [2022-09-11]. |
38 | CHAINSAFE. Ethereum javascript API [EB/OL]. [2022-09-11]. |
39 | REES K. Thousands of solana wallets drained in multimillion-dollar exploit [EB/OL]. [2022-09-16]. |
40 |
LIU J Q, ZHAO Z H, CUI X, et al. A novel approach for detecting browser-based silent miner [C]//IEEE Third International Conference on Data Science in Cyberspace. IEEE, 2018: 490–497. DOI: 10.1109/DSC.2018.00079
DOI |
41 |
RAO V V, MARSHAL R, GOBINATH K. The IoT supply chain attack trends-vulnerabilities and preventive measures [C]//Proceedings of 2021 4th International Conference on Security and Privacy (ISEA-ISAP). IEEE, 2021: 1–4. DOI: 10.1109/ISEA-ISAP54304.2021.9689704
DOI |
42 | FAROOQ M J, ZHU Q Y. IoT supply chain security: overview, challenges, and the road ahead [EB/OL]. [2022-09-16]. |
43 | ZAHAN N, ZIMMERMANN T, GODEFROID P, et al. What are weak links in the NPM supply chain? [C]//IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 2022: 331–340 |
44 | OPENSSF. Open source security metrics [EB/OL]. [2022-09-16]. |
45 | OSSF. Security scorecards-security health metrics for open source [EB/OL]. [2022-09-16]. |
46 | SLOWMIST. A blockchain security firm established [EB/OL]. (2018-01-20) [2022-09-16]. |
47 | TANG X, ZHOU K, CHENG J, et al. The vulnerabilities in smart contracts: a survey [C]//International Conference on Artificial Intelligence and Security. ICAIS, 2021: 177–190 |
48 |
JIANG B, LIU Y, CHAN W K. ContractFuzzer: fuzzing smart contracts for vulnerability detection [C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. ACM, 2018: 259–269. DOI: 10.1145/3238147.3238177
DOI |
49 |
CAO B, ZHANG Z H, FENG D Q, et al. Performance analysis and comparison of PoW, PoS and DAG based blockchains [J]. Digital communications and networks, 2020, 6(4): 480–485. DOI: 10.1016/j.dcan.2019.12.001
DOI |
50 | CASTRO M, LISKOV B. Practical byzantine fault tolerance [EB/OL]. [2022-09-11]. |
51 |
YIN M F, MALKHI D, REITER M K, et al. HotStuff: BFT consensus with linearity and responsiveness [C]//Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. ACM, 2019: 347–356. DOI: 0.1145/3293611.3331591
DOI |
52 |
MILLER A, XIA Y, CROMAN K, et al. The honey badger of BFT protocols [C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016: 31–42. DOI: 10.1145/2976749.2978399
DOI |
53 |
SANKAR L S, SINDHU M, SETHUMADHAVAN M. Survey of consensus protocols on blockchain applications [C]//The 4th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2017: 1–5. DOI: 10.1109/ICACCS.2017.8014672
DOI |
54 |
NGUYEN G T, KIM K. A survey about consensus algorithms used in blockchain [J]. Journal of Information processing systems, 2018, 14(1): 101–128. DOI:10.3745/JIPS.01.0024
DOI |
55 |
FENG L, YANG Z X, GUO S Y, et al. Two-layered blockchain architecture for federated learning over the mobile edge network [J]. IEEE network, 2022, 36(1): 45–51. DOI: 10.1109/MNET.011.2000339
DOI |
56 |
ASHERALIEVA A, NIYATO D. Reputation-based coalition formation for secure self-organized and scalable sharding in IoT blockchains with mobile-edge computing [J]. IEEE Internet of Things journal, 2020, 7(12): 11830–11850. DOI: 10.1109/JIOT.2020.3002969
DOI |
57 |
YUAN S J, LI J, LIANG J H, et al. Sharding for blockchain based mobile edge computing system: a deep reinforcement learning approach [C]//Proceedings of 2021 IEEE Global Communications Conference. IEEE, 2021: 1–6. DOI: 10.1109/GLOBECOM46510.2021.9685883
DOI |
58 |
HONG Z C, GUO S, LI P, et al. Pyramid: A layered sharding blockchain system [C]//IEEE Conference on Computer Communications. IEEE, 2021: 1–10. DOI: 10.1109/INFOCOM42981.2021.9488747
DOI |
59 |
WANG G, SHI Z J, NIXON M, et al. SoK: sharding on blockchain [C]//Proceedings of the 1st ACM Conference on Advances in Financial Technologies: ACM, 2019: 41–61. DOI: 10.1145/3318041.3355457
DOI |
60 |
SONNINO A, BANO S, AL-BASSAM M, et al. Replay attacks and defenses against cross-shard consensus in sharded distributed ledgers [C]//IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 2020: 294–308. DOI: 10.1109/EuroSP48549.2020.00026
DOI |
61 | HAN R, YU J, LIN H, et al. On the security and performance of blockchain sharding [EB/OL]. [2022-09-11]. |
62 |
KOKORIS-KOGIAS E, JOVANOVIC P, GASSER L, et al. OmniLedger: a secure, scale-out, decentralized ledger via sharding [C]//IEEE Symposium on Security and Privacy. IEEE, 2018: 583–598. DOI: 10.1109/SP.2018.000-5
DOI |
63 |
ZAMANI M, MOVAHEDI M, RAYKOVA M. RapidChain: scaling blockchain via full sharding [C]//ACM SIGSAC Conference on Computer and Communications Security. CCS, 2018: 931–948. DOI: 10.1145/3243734.3243853
DOI |
64 | GUPTA S, SADOGHI M. Efficient and non-blocking agreement protocols [J]. Distributed and parallel databases, 2020, 38(2): 287–333. |
65 | ABRAHAM I, CHAN T H H, DOLEV D, et al. Communication complexity of byzantine agreement, revisited [EB/OL]. [2022-09-11]. |
66 |
GUPTA Y, SHOREY R, KULKARNI D, et al. The applicability of blockchain in the Internet of Things [C]//The 10th International Conference on Communication Systems & Networks (COMSNETS). IEEE, 2018: 561–564. DOI: 10.1109/COMSNETS.2018.8328273
DOI |
67 |
SHRESTHA R, BAJRACHARYA R, NAM S Y. Blockchain-based message dissemination in VANET [C]//IEEE 3rd International Conference on Computing, Communication and Security. IEEE, 2018: 161–166. DOI: 10.1109/CCCS.2018.8586828
DOI |
68 |
ZHANG P Y, PANG X, KUMAR N, et al. A reliable data-transmission mechanism using blockchain in edge computing scenarios [J]. IEEE Internet of Things journal, 2022, 9(16): 14228–14236. DOI: 10.1109/JIOT.2020.3021457
DOI |
69 |
SAAD M, THAI M T, MOHAISEN A. POSTER: deterring DDoS attacks on blockchain-based cryptocurrencies through mempool optimization [C]//Proceedings of the 2018 on Asia Conference on Computer and Communications Security. IEEE, 2018: 809–811. DOI: 10.1145/3196494.3201584
DOI |
70 |
LUO S C, SANG Y P, SONG M Y, et al. Preventing DDoS attacks on bitcoin memory pool by the dynamic fee threshold mechanism [C]//Parallel and distributed computing, applications and technologies, 2021: 172–184. DOI: 10.1007/978-3-030-69244-5_15
DOI |
71 |
SAAD M, NJILLA L, KAMHOUA C, et al. Mempool optimization for defending against DDoS attacks in PoW-based blockchain systems [C]//IEEE International Conference on Blockchain and Cryptocurrency. IEEE, 2019: 285–292. DOI: 10.1109/BLOC.2019.8751476
DOI |
72 |
SAAD M, KIM J, NYANG D, et al. Contra: mechanisms for countering Spam attacks on blockchain’s memory pools [J]. Journal of network and computer applications, 2021, 179: 102971. DOI: 10.1016/j.jnca.2020.102971
DOI |
73 |
GUO Y H, ZHAO R, LAI S W, et al. Distributed machine learning for multiuser mobile edge computing systems [J]. IEEE journal of selected topics in signal processing, 2022, 16(3): 460–473. DOI: 10.1109/JSTSP.2022.3140660
DOI |
74 |
CHEN J G, LI K L, DENG Q Y, et al. Distributed deep learning model for intelligent video surveillance systems with edge computing [J]. IEEE transactions on industrial informatics, 2019, 99: 1. DOI: 10.1109/TII.2019.2909473
DOI |
75 |
SCHMOLL R S, PANDI S, BRAUN P J, et al. Demonstration of VR/AR offloading to mobile edge cloud for low latency 5G gaming application [C]//The 15th IEEE Annual Consumer Communications & Networking Conference. IEEE, 2018: 1–3. DOI: 10.1109/CCNC.2018.8319323
DOI |
76 | ZUO Y, JIN S, ZHANG S, et al. Blockchain storage and computation offloading for cooperative mobile-edge computing [J]. IEEE Internet of Things Journal, 2021, 8(11): 9084–9098 |
77 | NGUYEN D C, PATHIRANA P N, DING M, et al. Secure computation offloading in blockchain based IoT networks with deep reinforcement learning [J]. Transactions on network science and engineering, 2021, 8(4): 3192–3208 |
78 |
ZHAO C, ZHAO S N, ZHAO M H, et al. Secure Multi-Party Computation: Theory, practice and applications [J]. Information sciences, 2019, 476: 357–372. DOI: 10.1016/j.ins.2018.10.024
DOI |
79 |
ZHONG H, SANG Y, ZHANG Y, et al. Secure multi-party computation on blockchain: an overview [C]//International Symposium on Parallel Architectures, Algorithms and Programming. Springer, 2019: 452–460. DOI: 10.1007/978-981-15-2767-8_40
DOI |
80 |
ASWATHY S U, TYAGI A K, KUMARI S. The future of edge computing with blockchain technology: Possibility of threats, opportunities, and challenges [M]//Recent trends in blockchain for information systems security and privacy. Boca Raton: CRC Press, 2021: 261–292. DOI: 10.1201/9781003139737-18
DOI |
81 |
LU Y S, ZHANG J N, QI Y, et al. Accelerating at the edge: a storage-elastic blockchain for latency-sensitive vehicular edge computing [J]. IEEE transactions on intelligent transportation systems, 2022, 23(8): 11862–11876. DOI: 10.1109/TITS.2021.3108052
DOI |
82 |
CHATZIGIANNIS P, BALDIMTSI F, CHALKIAS K. Sok: blockchain light clients [C]//International Conference on Financial Cryptography and Data Security Cryptology. Springer, 2022:615–641. DOI: 10.1007/978-3-031-18283-9_31
DOI |
83 | MetaMask. The crypto wallet for Defi, Web3 Dapps and NFTs [EB/OL]. [2022-09-11]. |
84 |
ESKANDARI S, BARRERA D, STOBERT E, et al. A first look at the usability of bitcoin key management [C]//Proceedings 2015 Workshop on Usable Security. Internet Society, 2015: 55–63. DOI: 10.14722/usec.2015.23015
DOI |
85 | HENDRIX C, LEWIS R. Survey on blockchain privacy challenges [EB/OL]. [2022-09-11]. |
86 |
BLACKSHEAR S, CHALKIAS K, CHATZIGIANNIS P, et al. Reactive key-loss protection in blockchains [C]//International Conference on Financial Cryptography and Data Security. Springer, 2021: 431–450. DOI: 10.1007/978-3-662-63958-0_34
DOI |
87 | O’CONNOR R, PIEKARSKA M. Enhancing bitcoin transactions with covenants [C]//International Conference on Financial Cryptography and Data Security. Springer, 2017: 191–198 |
88 | MÖSER M, EYAL I, GÜN SIRER E. Bitcoin covenants [C]//International Conference on Financial Cryptography and Data Security. Springer, 2016: 126–141 |
89 | BARTOLETTI M, LANDE S, ZUNINO R. Bitcoin covenants unchained [EB/OL]. (2020-06-06)[2022-09-11]. |
90 |
ZHOU T Q, SHEN J, REN Y J, et al. Threshold key management scheme for blockchain-based intelligent transportation systems [J]. Security and communication networks, 2021: 1864514. DOI: 10.1155/2021/1864514
DOI |
91 |
MA M X, SHI G Z, LI F H. Privacy-oriented blockchain-based distributed key management architecture for hierarchical access control in the IoT scenario [J]. IEEE access, 7: 34045–34059. DOI: 10.1109/ACCESS.2019.2904042
DOI |
92 |
ZHANG S J, LEE J H. A group signature and authentication scheme for blockchain-based mobile-edge computing [J]. IEEE Internet of Things journal, 2020, 7(5): 4557–4565. DOI: 10.1109/JIOT.2019.2960027
DOI |
93 |
PAAVOLAINEN S, CARR C. Security properties of light clients on the ethereum blockchain [J]. IEEE access, 8: 124339–124358. DOI: 10.1109/ACCESS.2020.3006113
DOI |
94 | LETZ D. Blockquick: super-light client protocol for blockchain validation on constrained devices [EB/OL]. [2022-09-11]. |
95 | YUAN L, TANG Q, WANG G L. Generic superlight client for permissionless blockchains [EB/OL]. [2022-09-11]. |
96 |
JIANG S, CAO J N, ZHU J C, et al. PolyChain: a generic blockchain as a service platform [J]. Blockchain and trustworthy systems, 2021: 459–472. DOI: 10.1007/978-981-16-7993-3_36
DOI |
97 | AMIRI M J, WU C, AGRAWAL D, et al. The bedrock of BFT: a unified platform for BFT protocol design and implementation [EB/OL]. (2022-05-09)[2022-09-11]. |
98 | CELESTIA. The first modular blockchain network [EB/OL]. [2022-09-11]. |
99 | WERNER S M, PEREZ D, GUDGEON L, et al. SoK: decentralized finance (defi) [EB/OL]. (2021-01-21)[2022-09-11]. |
100 |
SETHAPUT V, INNET S. Blockchain application for central bank digital currencies (CBDC) [C]//The Third International Conference on Blockchain Computing and Applications (BCCA). IEEE, 2021: 3–10. DOI: 10.1109/BCCA53669.2021.9657012
DOI |
101 |
KELKAR M, ZHANG F, GOLDFEDER S, et al. Order-fairness for byzantine consensus [C]//Annual International Cryptology Conference. CRYPTO, 2020: 451–480. DOI: 10.1007/978-3-030-56877-1_16
DOI |
102 |
REJIBA Z, MASIP-BRUIN X, MARÍN-TORDERA E. A survey on mobility-induced service migration in the fog, edge, and related computing paradigms [J]. ACM computing surveys, 2020, 52(5): 1–33. DOI: 10.1145/3326540
DOI |
103 |
BANDARA H D, XU X W, WEBER I. Patterns for blockchain data migration [C]//Proceedings of the European Conference on Pattern Languages of Programs 2020. ACM, 2020: 1–19. DOI: 10.1145/3424771.3424796
DOI |
[1] | FENG Jianxin, PAN Yi, WU Xiao. Building a Stronger Foundation for Web3: Advantages of 5G Infrastructure [J]. ZTE Communications, 2024, 22(2): 3-10. |
[2] | CHEN Rui, LI Hui, LI Wuyang, BAI He, WANG Han, WU Naixing, FAN Ping, KANG Jian, DENG Selwyn, ZHU Xiang. MetaOracle: A High-Throughput Decentralized Oracle for Web 3.0-Empowered Metaverse [J]. ZTE Communications, 2024, 22(2): 11-18. |
[3] | MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang. Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain [J]. ZTE Communications, 2024, 22(2): 19-29. |
[4] | WU Zhihui, HONG Yuxuan, ZHOU Enyuan, LIU Lei, PEI Qingqi. Utilizing Certificateless Cryptography for IoT Device Identity Authentication Protocols in Web3 [J]. ZTE Communications, 2024, 22(2): 30-38. |
[5] | ZHAO Yaqiong, KE Hongqin, XU Wei, YE Xinquan, CHEN Yijian. RIS-Assisted Cell-Free MIMO: A Survey [J]. ZTE Communications, 2024, 22(1): 77-86. |
[6] | AWADA Uchechukwu, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi. Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing [J]. ZTE Communications, 2023, 21(2): 40-52. |
[7] | LU Haitao, YAN Xincheng, ZHOU Qiang, DAI Jiulong, LI Rui. Key Intrinsic Security Technologies in 6G Networks [J]. ZTE Communications, 2022, 20(4): 22-31. |
[8] | HE Miao, LI Xiangman, NI Jianbing. Physical Layer Security for MmWave Communications: Challenges and Solutions [J]. ZTE Communications, 2022, 20(4): 41-51. |
[9] | YAN Xincheng, TENG Huiyun, PING Li, JIANG Zhihong, ZHOU Na. Study on Security of 5G and Satellite Converged Communication Network [J]. ZTE Communications, 2021, 19(4): 79-89. |
[10] | ZHAO Tian, LI Hui, YANG Xin, WANG Han, ZENG Ming, GUO Haisheng, WANG Dezheng. Differentially Authorized Deduplication System Based on Blockchain [J]. ZTE Communications, 2021, 19(2): 67-76. |
[11] | LIN Xinhua, ZHANG Jing, LI Qiang. Cluster Head Selection Algorithm for UAV Assisted Clustered IoT Network Utilizing Blockchain [J]. ZTE Communications, 2021, 19(1): 30-38. |
[12] | SHI Wenqi, SUN Yuxuan, HUANG Xiufeng, ZHOU Sheng, NIU Zhisheng. Scheduling Policies for Federated Learning in Wireless Networks: An Overview [J]. ZTE Communications, 2020, 18(2): 11-19. |
[13] | YANG Howard H., ZHAO Zhongyuan, QUEK Tony Q. S.. Enabling Intelligence at Network Edge:An Overview of Federated Learning [J]. ZTE Communications, 2020, 18(2): 2-10. |
[14] | WU Hequan. Ten Reflections on 5G [J]. ZTE Communications, 2020, 18(1): 1-4. |
[15] | TANG Kai. Risk Analysis of Industrial InternetIdentity System [J]. ZTE Communications, 2020, 18(1): 44-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||