ZTE Communications ›› 2024, Vol. 22 ›› Issue (2): 19-29.DOI: 10.12142/ZTECOM.202402004
• Special Topic • Previous Articles Next Articles
MA Qianli1(), ZHANG Shengli1, WANG Taotao1, YANG Qing1, WANG Jigang2
Received:
2024-03-23
Online:
2024-06-28
Published:
2024-06-25
About author:
MA Qianli (maqianli@foxmail.com) received his BE degree in software engineering from University of Electronic Science and Technology of China in 2020. He is currently working toward his ME degree in electronic information engineering from Shenzhen University, China. His research focuses on blockchain.MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang. Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain[J]. ZTE Communications, 2024, 22(2): 19-29.
Order | Transaction | Read Set | Write Set | Validity |
---|---|---|---|---|
1 | - | ( | Valid | |
2 | ( | ( | Invalid |
Table 1 An example of within-block conflict
Order | Transaction | Read Set | Write Set | Validity |
---|---|---|---|---|
1 | - | ( | Valid | |
2 | ( | ( | Invalid |
Read Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tx | ||||||||||
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Wirte Set | ||||||||||
Tx | ||||||||||
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Table 2 Read and write sets of the six transactions
Read Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tx | ||||||||||
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Wirte Set | ||||||||||
Tx | ||||||||||
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Transaction | In-Degree | Out-Degree |
---|---|---|
1 | 1 | |
3 | 1 | |
2 | 2 | |
2 | 1 | |
1 | 3 | |
0 | 1 |
Table 3 Initial in-degree and out-degree of the six transactions
Transaction | In-Degree | Out-Degree |
---|---|---|
1 | 1 | |
3 | 1 | |
2 | 2 | |
2 | 1 | |
1 | 3 | |
0 | 1 |
Number of Accounts | 3 000 | 2 500 | 2 000 | 1 500 | 1 000 | 500 |
---|---|---|---|---|---|---|
Conflict rate/% | 10.5 | 14 | 20.3 | 32.3 | 46.4 | 67.8 |
Table 4 Number of accounts and corresponding conflict rates
Number of Accounts | 3 000 | 2 500 | 2 000 | 1 500 | 1 000 | 500 |
---|---|---|---|---|---|---|
Conflict rate/% | 10.5 | 14 | 20.3 | 32.3 | 46.4 | 67.8 |
1 | NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system [EB/OL]. (2008-10-31)[2024-03-15]. |
2 | BUTERIN V. A next generation smart contract & decentralized application platform [R]. Ethereum white paper, 2014 |
3 | QIN K H, ZHOU L Y, GERVAIS A. Quantifying blockchain extractable value: how dark is the forest? [C]//Proc. IEEE Symposium on Security and Privacy (SP). IEEE, 2022: 198–214. DOI: 10.1109/SP46214.2022.9833734 |
4 | AZARIA A, EKBLAW A, VIEIRA T, et al. MedRec: using blockchain for medical data access and permission management [C]//Proc. 2nd International Conference on Open and Big Data (OBD). IEEE, 2016: 25–30. DOI: 10.1109/OBD.2016.11 |
5 | FAN K, WANG S Y, REN Y H, et al. MedBlock: efficient and secure medical data sharing via blockchain [J]. Journal of medical systems, 2018, 42(8): 136. DOI: 10.1007/s10916-018-0993-7 |
6 | ABEYRATNE S A, MONFARED R P. Blockchain ready manufacturing supply chain using distributed ledger [J]. International journal of research in engineering and technology, 2016, 5(9): 1–10. DOI:10.15623/IJRET.2016.0509001 |
7 | DAI H N, ZHENG Z B, ZHANG Y. Blockchain for internet of things: a survey [J]. IEEE internet of things journal, 2019, 6(5): 8076–8094. DOI: 10.1109/JIOT.2019.2920987 |
8 | VUKOLIĆ M. The quest for scalable blockchain fabric: proof-of-work vs. BFT replication [M]//Open problems in network security. Cham: Springer International Publishing, 2016: 112–125. DOI: 10.1007/978-3-319-39028-4_9 |
9 | CHARRON-BOST B, PEDONE F, SCHIPER A. Replication: theory and practice [M]. Berlin Heidelberg: Springer, 2010 |
10 | PAPADIMITRIOU C H, KANELLAKIS P C. On concurrency control by multiple versions [J]. ACM transactions on database systems, 9(1): 89–99. DOI: 10.1145/348.318588 |
11 | SHARMA A, SCHUHKNECHT F M, AGRAWAL D, et al. Blurring the lines between blockchains and database systems: the case of hyperledger fabric [C]//Proc. 2019 International Conference on Management of Data. ACM, 2019: 105–122. DOI: 10.1145/3299869.3319883 |
12 | ANDROULAKI E, BARGER A, BORTNIKOV V, et al. Hyperledger fabric: a distributed operating system for permissioned blockchains [C]//Proc. Thirteenth EuroSys Conference. ACM, 2018: 1–15. DOI: 10.1145/3190508.3190538 |
13 | TARJAN R. Depth-first search and linear graph algorithms [C]//Proc. 12th Annual Symposium on Switching and Automata Theory. IEEE, 1971: 114–121. DOI: 10.1109/SWAT.1971.10 |
14 | JOHNSON D B. Finding all the elementary circuits of a directed graph [J]. SIAM journal on computing, 1975, 4(1): 77–84. DOI: 10.1137/0204007 |
15 | THAKKAR P, NATHAN S, VISWANATHAN B. Performance benchmarking and optimizing hyperledger fabric blockchain platform [C]//Proc IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE, 2018: 264–276. DOI: 10.1109/MASCOTS.2018.00034 |
16 | GORENFLO C, LEE S, GOLAB L, et al. FastFabric: scaling hyperledger fabric to 20000 transactions per second [J]. International journal of network management, 2020, 30(5): e2099. DOI: 10.1002/nem.2099 |
17 | RUAN P C, LOGHIN D, TA Q T, et al. A transactional perspective on execute-order-validate blockchains [C]//Proc. 2020 ACM SIGMOD International Conference on Management of Data. ACM, 2020: 543–557. DOI: 10.1145/3318464.3389693 |
18 | SUN Q C, YUAN Y Y, GUO T, et al. A trusted solution to hyperledger fabric reordering problem [C]//Proc. 8th International Conference on Dependable Systems and Their Applications (DSA). IEEE, 2021: 202–207. DOI: 10.1109/DSA52907.2021.00031 |
19 | WU H B, LIU H, LI J. FabricETP: a high-throughput blockchain optimization solution for resolving concurrent conflicting transactions [J]. Peer-to-peer networking and applications, 2023, 16(2): 858–875. DOI: 10.1007/s12083-022-01401-9 |
20 | GARAMVOLGYI P, LIU Y X, ZHOU D, et al. Utilizing parallelism in smart contracts on decentralized blockchains by taming application-inherent conflicts [C]//Proc. IEEE/ACM 44th International Conference on Software Engineering (ICSE). IEEE, 2022: 2315–2326. DOI: 10.1145/3510003.3510086 |
[1] | CHEN Rui, LI Hui, LI Wuyang, BAI He, WANG Han, WU Naixing, FAN Ping, KANG Jian, DENG Selwyn, ZHU Xiang. MetaOracle: A High-Throughput Decentralized Oracle for Web 3.0-Empowered Metaverse [J]. ZTE Communications, 2024, 22(2): 11-18. |
[2] | CAO Yinfeng, CAO Jiannong, WANG Yuqin, WANG Kaile, LIU Xun. Security in Edge Blockchains: Attacks and Countermeasures [J]. ZTE Communications, 2022, 20(4): 3-14. |
[3] | ZHAO Tian, LI Hui, YANG Xin, WANG Han, ZENG Ming, GUO Haisheng, WANG Dezheng. Differentially Authorized Deduplication System Based on Blockchain [J]. ZTE Communications, 2021, 19(2): 67-76. |
[4] | LIN Xinhua, ZHANG Jing, LI Qiang. Cluster Head Selection Algorithm for UAV Assisted Clustered IoT Network Utilizing Blockchain [J]. ZTE Communications, 2021, 19(1): 30-38. |
[5] | XING Kaixuan, LI Hui, YIN Feng, MA Huajun, HOU Hanxu, XU Huanle, HAN Yunghsiang S., LIU Ji, SUN Tao. Prototype of Multi-Identifier SystemBased on Voting Consensus [J]. ZTE Communications, 2020, 18(1): 7-17. |
[6] | LEI Ao, Chibueze Ogah, Philip Asuquo, Haitham Cruickshank, SUN Zhili. A Secure Key Management Scheme for Heterogeneous Secure Vehicular Communication Systems [J]. ZTE Communications, 2016, 14(S0): 21-31. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 115
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||