ZTE Communications ›› 2021, Vol. 19 ›› Issue (1): 30-38.DOI: 10.12142/ZTECOM.202101005
• Special Topic • Previous Articles Next Articles
LIN Xinhua, ZHANG Jing(), LI Qiang
Received:
2020-12-10
Online:
2021-03-25
Published:
2021-04-09
About author:
LIN Xinhua is a graduate student of Huazhong University of Science and Technology, China. His main research interests include UAV communications, blockchain technology and IoT networks.|ZHANG Jing (LIN Xinhua, ZHANG Jing, LI Qiang. Cluster Head Selection Algorithm for UAV Assisted Clustered IoT Network Utilizing Blockchain[J]. ZTE Communications, 2021, 19(1): 30-38.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202101005
Parameter | Value |
---|---|
Network area | 100 m×100 m |
Number of UAVs | 5–30 |
Total number of IoT devices | 10–150 |
The number of IoT in a cluster | 4–20 |
UAV transmit power | 2–4 W |
UAV remaining energy | 400–900 kJ |
IoT transmit power | 0.5–1.5 W |
Computational capability of an IoT device | 0.1 GHz CPU cycles/bit |
Computational energy efficiency coefficient of the processors chip in an IoT device | |
Computation workload/intensity | 18 000 CPU cycles/bit |
Sizes of transaction | 256 bit |
Size of a packet transmitted by an IoT device | 4 000 bit |
Noise power, | -100 dBm |
Weighting factors, | 0.3, 0.2, 0.3, 0.2 |
Table 1 Simulation parameters
Parameter | Value |
---|---|
Network area | 100 m×100 m |
Number of UAVs | 5–30 |
Total number of IoT devices | 10–150 |
The number of IoT in a cluster | 4–20 |
UAV transmit power | 2–4 W |
UAV remaining energy | 400–900 kJ |
IoT transmit power | 0.5–1.5 W |
Computational capability of an IoT device | 0.1 GHz CPU cycles/bit |
Computational energy efficiency coefficient of the processors chip in an IoT device | |
Computation workload/intensity | 18 000 CPU cycles/bit |
Sizes of transaction | 256 bit |
Size of a packet transmitted by an IoT device | 4 000 bit |
Noise power, | -100 dBm |
Weighting factors, | 0.3, 0.2, 0.3, 0.2 |
1 |
BUTUN I, ÖSTERBERG P, SONG H B. Security of the Internet of Things: vulnerabilities, attacks, and countermeasures [J]. IEEE communications surveys & tutorials, 2020, 22(1): 616–644. DOI: 10.1109/COMST.2019.2953364
DOI |
2 |
AGIWAL M, ROY A, SAXENA N. Next generation 5G wireless networks: a comprehensive survey [J]. IEEE communications surveys & tutorials, 2016, 18(3): 1617–1655. DOI: 10.1109/COMST.2016.2532458
DOI |
3 |
XU L N, COLLIER R, O’HARE G M P. A survey of clustering techniques in WSNs and consideration of the challenges of applying such to 5G IoT scenarios [J]. IEEE Internet of Things journal, 2017, 4(5): 1229–1249. DOI: 10.1109/JIOT.2017.2726014
DOI |
4 |
BEHERA T M, MOHAPATRA S K, SAMAL U C, et al. Residual energy⁃based cluster⁃head selection in WSNs for IoT application [J]. IEEE Internet of Things journal, 2019, 6(3): 5132–5139. DOI: 10.1109/JIOT.2019.2897119
DOI |
5 |
ALI M S, VECCHIO M, PINCHEIRA M, et al. Applications of blockchains in the Internet of Things: a comprehensive survey [J]. IEEE communications surveys & tutorials, 2019, 21(2): 1676–1717. DOI: 10.1109/COMST.2018.2886932
DOI |
6 |
HEINZELMAN W B, CHANDRAKASAN A P, BALAKRISHNAN H. An application⁃specific protocol architecture for wireless microsensor networks [J]. IEEE transactions on wireless communications, 2002, 1(4): 660–670. DOI: 10.1109/TWC.2002.804190
DOI |
7 |
YOUNIS O, FAHMY S. HEED: a hybrid, energy⁃efficient, distributed clustering approach for ad hoc sensor networks [J]. IEEE transactions on mobile computing, 2004, 3(4): 366–379. DOI: 10.1109/TMC.2004.41
DOI |
8 |
AADIL F, KHAN M F, MAQSOOD M, et al. Energy aware cluster⁃based routing in flying ad⁃hoc networks [J]. Sensors, 2018, 18(5): 1413. DOI: 10.3390/s18051413
DOI |
9 |
MOZAFFARI M, SAAD W, BENNIS M, et al. A tutorial on UAVs for wireless networks: applications, challenges, and open problems [J]. IEEE communications surveys & tutorials, 2019, 21(3): 2334–2360. DOI: 10.1109/COMST.2019.2902862
DOI |
10 |
SUN Y, DONGFANG X, NG D W K, et al. Optimal 3D⁃trajectory design and resource allocation for solar⁃powered UAV communication systems [J]. IEEE transactions on communications, 2019, 67(6): 4281–4298. DOI: 10.1109/TCOMM.2019.2900630
DOI |
11 | GUPTA L, JAIN R, VASZKUN G. Survey of important issues in UAV communication networks [EB/OL]. (2016⁃03⁃28)[2020⁃10⁃16]. |
12 |
MAO G, FIDAN B, ANDERSON B D O. Wireless sensor network localization techniques [J]. Computer networks, 2007, 51(10): 2529–2553. DOI: 10.1016/j.comnet.2006.11.018
DOI |
13 |
FERNÁNDEZ⁃CARAMÉS T M, FRAGA⁃LAMAS P. A review on the use of blockchain for the Internet of Things [J]. IEEE access, 2018, 6: 32979–33001. DOI: 10.1109/ACCESS.2018.2842685
DOI |
14 |
ARAFAT M Y, MOH S. Localization and clustering based on swarm intelligence in UAV networks for emergency communications [J]. IEEE Internet of Things journal, 2019, 6(5): 8958–8976. DOI: 10.1109/JIOT.2019.2925567
DOI |
15 | WU Q Q, MEI W D, ZHANG R. Safeguarding wireless network with UAVs: a physical layer security perspective [EB/OL]. (2019⁃07⁃24)[2020⁃10⁃16]. |
16 | ZENG Y, XU J, ZHANG R. Energy minimization for wireless communication with rotary⁃wing UAV [EB/OL]. (2018⁃04⁃06)[2020⁃10⁃16]. |
[1] | WEI Zhiqing, ZHANG Yongji, JI Danna, LI Chenfei. Sensing and Communication Integrated Fast Neighbor Discovery for UAV Networks [J]. ZTE Communications, 2024, 22(3): 69-82. |
[2] | FENG Jianxin, PAN Yi, WU Xiao. Building a Stronger Foundation for Web3: Advantages of 5G Infrastructure [J]. ZTE Communications, 2024, 22(2): 3-10. |
[3] | CHEN Rui, LI Hui, LI Wuyang, BAI He, WANG Han, WU Naixing, FAN Ping, KANG Jian, DENG Selwyn, ZHU Xiang. MetaOracle: A High-Throughput Decentralized Oracle for Web 3.0-Empowered Metaverse [J]. ZTE Communications, 2024, 22(2): 11-18. |
[4] | MA Qianli, ZHANG Shengli, WANG Taotao, YANG Qing, WANG Jigang. Optimization of High-Concurrency Conflict Issues in Execute-Order-Validate Blockchain [J]. ZTE Communications, 2024, 22(2): 19-29. |
[5] | WU Zhihui, HONG Yuxuan, ZHOU Enyuan, LIU Lei, PEI Qingqi. Utilizing Certificateless Cryptography for IoT Device Identity Authentication Protocols in Web3 [J]. ZTE Communications, 2024, 22(2): 30-38. |
[6] | YANG Yibing, LIU Ming, XU Rongtao, WANG Gongpu, GONG Wei. Link Budget and Enhanced Communication Distance for Ambient Internet of Things [J]. ZTE Communications, 2024, 22(1): 16-23. |
[7] | ZHAO Yaqiong, KE Hongqin, XU Wei, YE Xinquan, CHEN Yijian. RIS-Assisted Cell-Free MIMO: A Survey [J]. ZTE Communications, 2024, 22(1): 77-86. |
[8] | AWADA Uchechukwu, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi. Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing [J]. ZTE Communications, 2023, 21(2): 40-52. |
[9] | LI Yuting, DING Yi, GAO Jiangchuan, LIU Yusha, HU Jie, YANG Kun. UAV Autonomous Navigation for Wireless Powered Data Collection with Onboard Deep Q-Network [J]. ZTE Communications, 2023, 21(2): 80-87. |
[10] | HUANG Rui, LI Huilin, ZHANG Yongmin. Efficient Bandwidth Allocation and Computation Configuration in Industrial IoT [J]. ZTE Communications, 2023, 21(1): 55-63. |
[11] | CAO Yinfeng, CAO Jiannong, WANG Yuqin, WANG Kaile, LIU Xun. Security in Edge Blockchains: Attacks and Countermeasures [J]. ZTE Communications, 2022, 20(4): 3-14. |
[12] | CUI Ziqi, WANG Gongpu, WANG Zhigang, AI Bo, XIAO Huahua. Symbiotic Radio Systems: Detection and Performance Analysis [J]. ZTE Communications, 2022, 20(3): 93-98. |
[13] | LI Xiuxian, LI Zhetao, OUYANG Yan, DUAN Haohua, XIANG Liyao. Using UAV to Detect Truth for Clean Data Collection in Sensor‑Cloud Systems [J]. ZTE Communications, 2021, 19(3): 30-45. |
[14] | HAN Suning, LI Xiuhua, SUN Chuan, WANG Xiaofei, LEUNG Victor C. M.. RecCac: Recommendation-Empowered Cooperative Edge Caching for Internet of Things [J]. ZTE Communications, 2021, 19(2): 2-10. |
[15] | TAN Jie, SHA Xiubin, DAI Bo, LU Ting. Analysis of Industrial Internet of Things and Digital Twins [J]. ZTE Communications, 2021, 19(2): 53-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||