ZTE Communications ›› 2025, Vol. 23 ›› Issue (1): 53-62.DOI: 10.12142/ZTECOM.202501007
• Special Topic • Previous Articles Next Articles
TANG Chenyue1(), LI Zeshen1, CHEN Zihan2, YANG Howard H.1
Received:
2025-01-02
Online:
2025-03-25
Published:
2025-03-25
About author:
TANG Chenyue (chenyue.23@intl.zju.edu.cn) received her BE degree from Central South University, China in 2023. She is currently working toward her master's degree in electrical engineering and information technology at Zhejiang University, China. Her current research interests include statistical signal processing, inverse problems, and machine learning.Supported by:
TANG Chenyue, LI Zeshen, CHEN Zihan, YANG Howard H.. Device Activity Detection and Channel Estimation Using Score-Based Generative Models in Massive MIMO[J]. ZTE Communications, 2025, 23(1): 53-62.
Figure 3 An elaborate schematic representation of model sθ utilizing the RefineNet architecture. This fundamental block is cascaded D times in sequence
1 | CHEN X M, NG D W K, YU W, et al. Massive access for 5G and beyond [J]. IEEE journal on selected areas in communications, 2021, 39(3): 615-637. DOI: 10.1109/JSAC.2020.3019724 |
2 | MIUCCIO L, PANNO D, RIOLO S. An energy-efficient DL-aided massive multiple access scheme for IoT scenarios in beyond 5G networks [J]. IEEE Internet of Things journal, 2023, 10(9): 7936–7959. DOI: 10.1109/JIOT.2022.3231128 |
3 | VISWANATHAN H, MOGENSEN P E. Communications in the 6G era [J]. IEEE access, 2020, 8: 57063–57074. DOI: 10.1109/ACCESS.2020.2981745 |
4 | WEI F, CHEN W, WU Y P, et al. Toward 5G wireless interface technology: enabling nonorthogonal multiple access in the sparse code domain [J]. IEEE vehicular technology magazine, 2018, 13(4): 18–27. DOI: 10.1109/MVT.2018.2867280 |
5 | LIU L, YU W. Massive connectivity with massive MIMO: part I: device activity detection and channel estimation [J]. IEEE transactions on signal processing, 2018, 66(11): 2933–2946. DOI: 10.1109/TSP.2018.2818082 |
6 | DING J, QU D M, FENG M J, et al. Dynamic preamble-resource partitioning for critical MTC in massive MIMO systems [J]. IEEE Internet of Things journal, 2021, 8(20): 15361–15371. DOI: 10.1109/JIOT.2021.3064061 |
7 | RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: opportunities and challenges with very large arrays [J]. IEEE signal processing magazine, 2013, 30(1): 40–60. DOI: 10.1109/MSP.2011.2178495 |
8 | SHEN J C, ZHANG J, CHEN K C, et al. High-dimensional CSI acquisition in massive MIMO: Sparsity-inspired approaches [J]. IEEE systems journal, 2017, 11(1): 32–40. DOI: 10.1109/JSYST.2015.2448661 |
9 | LIU L, LARSSON E G, YU W, et al. Sparse signal processing for grant-free massive connectivity: a future paradigm for random access protocols in the Internet of Things [J]. IEEE signal processing magazine, 2018, 35(5): 88–99. DOI: 10.1109/MSP.2018.2844952 |
10 | DAI J S, LIU A, LAU V K N. FDD massive MIMO channel estimation with arbitrary 2D-array geometry [J]. IEEE transactions on signal processing, 66(10): 2584–2599. DOI: 10.1109/tsp.2018.2807390 |
11 | RAJORIYA A, RUKHSANA S, BUDHIRAJA R. Centralized and decentralized active user detection and channel estimation in mMTC [J]. IEEE transactions on communications, 70(3): 1759–1776. DOI: 10.1109/tcomm.2022.3141401 |
12 | JALAL A, ARVINTE M, DARAS G, et al. Robust compressed sensing MRI with deep generative priors [C]//Proc. 35th International Conference on Neural Information Processing Systems. ACM, 2021: 14938–14954. DOI: 10.5555/3540261.3541406 |
13 | SONG Y, SHEN L Y, XING L, et al. Solving inverse problems in medical imaging with score-based generative models [EB/OL]. (2021-11-15)[2024-08-30]. |
14 | MENG X M, KABASHIMA Y. Diffusion model based posterior sampling for noisy linear inverse problems [EB/OL]. (2022-11-20)[2024-12-11]. |
15 | CANDÈS E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements [J]. Communications on pure and applied mathematics, 2006, 59(8): 1207–1223. DOI: 10.1002/cpa.20124 |
16 | WU Y, ROSCA M, LILLICRAP T. Deep compressed sensing [C]//36th International Conference on Machine Learning. PMLR, 2019: 6850–6860 |
17 | AALI A, ARVINTE M, KUMAR S, et al. Solving inverse problems with score-based generative priors learned from noisy data [C]//Proc. 57th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2023: 837–843. DOI: 10.1109/IEEECONF59524.2023.10477042 |
18 | ALKHATEEB A, LEUS G, HEATH R W. Compressed sensing based multi-user millimeter wave systems: how many measurements are needed? [C]//Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015: 2909–2913.. DOI: 10.1109/icassp.2015.7178503 |
19 | REZENDE D J, MOHAMED S, REZENDE D J, et al. Variational inference with normalizing flows [C]//Proc. 32nd International Conference on International Conference on Machine Learning - Volume 37. ACM, 2015: 1530–1538. DOI: 10.5555/3045118.3045281 |
20 | SONG Y, ERMON S. Generative modeling by estimating gradients of the data distribution [J]. 2019: 11918–11930. DOI: 10.5555/3454287.3455354 |
21 | SONG Y, ERMON S, SONG Y, et al. Improved techniques for training score-based generative models [C]//Proc. 34th International Conference on Neural Information Processing Systems. ACM, 2020: 12438–12448. DOI: 10.5555/3495724.3496767 |
22 | MENG X M, KABASHIMA Y. Quantized compressed sensing with score-based generative models [EB/OL]. (2022-11-02)[2024-12-11]. |
23 | BORA A, JALAL A, PRICE E, et al. Compressed sensing using generative models [C]//Proc. 34th International Conference on Machine Learning. ACM, 2017: 537–546. DOI: 10.5555/3305381.3305437 |
24 | HASAN M, HOSSAIN E, NIYATO D. Random access for machine-to-machine communication in LTE-advanced networks: issues and approaches [J]. IEEE communications magazine, 2013, 51(6): 86–93. DOI: 10.1109/MCOM.2013.6525600 |
25 | PRATAS N K, THOMSEN H, STEFANOVIĆ Č, et al. Code-expanded random access for machine-type communications [C]//Proc. IEEE Globecom Workshops. IEEE, 2012: 1681–1686. DOI: 10.1109/GLOCOMW.2012.6477838 |
26 | CHEN Z L, YU W. Massive device activity detection by approximate message passing [C]//Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017: 3514–3518. DOI: 10.1109/ICASSP.2017.7952810 |
27 | DONOHO D L, MALEKI A, MONTANARI A. Message-passing algorithms for compressed sensing [J]. Proceedings of the national academy of sciences of the United States of America, 2009, 106(45): 18914–18919. DOI: 10.1073/pnas.0909892106 |
28 | BAYATI M, MONTANARI A. The dynamics of message passing on dense graphs, with applications to compressed sensing [J]. IEEE transactions on information theory, 2011, 57(2): 764–785. DOI: 10.1109/TIT.2010.2094817 |
29 | HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models [C]//34th International Conference on Neural Information Processing Systems. NIPS, 2020: 6840–6851 |
30 | BATZOLIS G, STANCZUK J, SCHÖNLIEB C B, et al. Conditional image generation with score-based diffusion models [EB/OL]. (2021-11-26)[2024-12-11]. |
31 | SOLTANI M, POURAHMADI V, MIRZAEI A, et al. Deep learning-based channel estimation [J]. IEEE communications letters, 2019, 23(4): 652–655. DOI: 10.1109/LCOMM.2019.2898944 |
32 | HE H T, WEN C K, JIN S, et al. Deep learning-based channel estimation for beamspace mmWave massive MIMO systems [J]. IEEE wireless communications letters, 2018, 7(5): 852–855. DOI: 10.1109/LWC.2018.2832128 |
33 | METZLER C A, MOUSAVI A, BARANIUK R G, et al. Learned D-amp [C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017: 1770–1781. DOI: 10.5555/3294771.3294940 |
34 | ARVINTE M, TAMIR J I. MIMO channel estimation using score-based generative models [J]. IEEE transactions on wireless communications, 2023, 22(6): 3698–3713. DOI: 10.1109/TWC.2022.3220784 |
35 | LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems [J]. IEEE communications magazine, 52(2): 186–195. DOI: 10.1109/mcom.2014.6736761 |
36 | BORGES D, MONTEZUMA P, DINIS R, et al. Massive MIMO techniques for 5G and beyond: opportunities and challenges [J]. Electronics, 2021, 10(14): 1667. DOI: 10.3390/electronics10141667 |
37 | TARANTOLA A. Inverse problem theory and methods for model parameter estimation [M]. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2005. DOI: 10.1137/1.9780898717921 |
38 | BOTTARELLI M, EPIPHANIOU G, ISMAIL D K BEN, et al. Physical characteristics of wireless communication channels for secret key establishment: a survey of the research [J]. Computers & security, 2018, 78: 454–476. DOI: 10.1016/j.cose.2018.08.001 |
39 | VINCENT P. A connection between score matching and denoising autoencoders [J]. Neural computation, 2011, 23(7): 1661–1674. DOI: 10.1162/neco_a_00142 |
40 | SONG Y, DURKAN C, MURRAY I, et al. Maximum likelihood training of score-based diffusion models [EB/OL]. (2021-01-22)[2024-08-30]. |
41 | ROBERTS G O, TWEEDIE R L. Exponential convergence of Langevin distributions and their discrete approximations [J]. Bernoulli, 1996, 2(4): 341. DOI: 10.2307/3318418 |
42 | DANUFANE F H, DI RENZO M, DE ROSNY J, et al. On the path-loss of reconfigurable intelligent surfaces: an approach based on Green's theorem applied to vector fields [J]. IEEE transactions on communications, 2021, 69(8): 5573–5592. DOI: 10.1109/TCOMM.2021.3081452 |
43 | DATTA T, KUMAR N A, CHOCKALINGAM A, et al. A novel Monte-Carlo-sampling-based receiver for large-scale uplink multiuser MIMO systems [J]. IEEE transactions on vehicular technology, 2013, 62(7): 3019–3038. DOI: 10.1109/TVT.2013.2260572 |
44 | AOUDIA F AIT, HOYDIS J. End-to-end learning for OFDM: from neural receivers to pilotless communication [J]. IEEE transactions on wireless communications, 2022, 21(2): 1049–1063. DOI: 10.1109/TWC.2021.3101364 |
[1] | CHENG Jiaming, CHEN Wei, LI Lun, AI Bo. Efficient Spatio-Temporal Predictive Learning for Massive MIMO CSI Prediction [J]. ZTE Communications, 2025, 23(1): 3-10. |
[2] | WANG Jilin, ZENG Xianlong, YANG Yonghui, PENG Lin, LI Lingxiang. Tensor Decomposition-Based Channel Estimation and Sensing for Millimeter Wave MIMO-OFDM V2I Systems [J]. ZTE Communications, 2024, 22(3): 56-68. |
[3] | XIE Xinyu, WU Yongpeng, YUAN Zhifeng, MA Yihua. Massive Unsourced Random Access Under Carrier Frequency Offset [J]. ZTE Communications, 2023, 21(3): 45-53. |
[4] | GUAN Xinrong, WU Qingqing. IRS‑Enabled Spectrum Sharing: Interference Modeling, Channel Estimation and Robust Passive Beamforming [J]. ZTE Communications, 2022, 20(1): 28-35. |
[5] | SHAO Zhichao, YAN Wenjing, YUAN Xiaojun. Markovian Cascaded Channel Estimation for RIS Aided Massive MIMO Using 1‑Bit ADCs and Oversampling [J]. ZTE Communications, 2022, 20(1): 48-56. |
[6] | JIAN Mengnan, ZHANG Nan, CHEN Yijian. RIS: Spatial‑Wideband Effect Analysis and Off‑Grid Channel Estimation [J]. ZTE Communications, 2022, 20(1): 57-62. |
[7] | NAIKOTI Ashwitha, CHOCKALINGAM Ananthanarayanan. Signal Detection and Channel Estimation in OTFS [J]. ZTE Communications, 2021, 19(4): 16-33. |
[8] | Julian AHRENS, Lia AHRENS, Hans D. SCHOTTEN. A Machine Learning Method for Prediction of Multipath Channels [J]. ZTE Communications, 2019, 17(4): 12-18. |
[9] | Stefano Buzzi, Carmen D’Andrea. Massive MIMO 5G Cellular Networks: mm-Wave vs. μ-Wave Frequencies [J]. ZTE Communications, 2017, 15(S1): 41-49. |
[10] | ZHANG Jianhua, WANG Chao, WU Zhongyuan, ZHANG Weite. A Survey of Massive MIMO Channel Measurements and Models [J]. ZTE Communications, 2017, 15(1): 14-22. |
[11] | ZHANG Ping, CHEN Jianqiao, TANG Tian. An Overview of Non-Stationary Property for Massive MIMO Channel Modeling [J]. ZTE Communications, 2017, 15(1): 3-7. |
[12] | Sohail Taheri, Mir Ghoraishi, XIAO Pei, CAO Aijun, GAO Yonghong. Evaluation of Preamble Based Channel Estimation for MIMO-FBMC Systems [J]. ZTE Communications, 2016, 14(4): 3-10. |
[13] | Yifei Yuan, Xiaowu Zhao. 5G: Vision, Scenarios and Enabling Technologies [J]. ZTE Communications, 2015, 13(1): 3-10. |
[14] | Fa-Long Luo. Signal Processing Techniques for 5G: An Overview [J]. ZTE Communications, 2015, 13(1): 20-27. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 2
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||