ZTE Communications ›› 2025, Vol. 23 ›› Issue (1): 3-10.DOI: 10.12142/ZTECOM.202501002
• Special Topic • Previous Articles Next Articles
CHENG Jiaming1, CHEN Wei1(), LI Lun2,3, AI Bo1
Received:
2025-02-23
Online:
2025-03-25
Published:
2025-03-25
About author:
CHENG Jiaming received his BE degree from Beijing Jiaotong University, China in 2024, where he is currently pursuing his PhD degree. His current research interests include massive MIMO and intelligent communications.Supported by:
CHENG Jiaming, CHEN Wei, LI Lun, AI Bo. Efficient Spatio-Temporal Predictive Learning for Massive MIMO CSI Prediction[J]. ZTE Communications, 2025, 23(1): 3-10.
Parameter | Value |
---|---|
Channel type | 3GPP CDL-C and UMa[ |
Carrier frequency | 2 GHz |
Bandwidth | 10 MHz |
32 | |
1 | |
Number of subcarriers | 32 |
Feedback interval | 1 ms |
UE speed | 30 km/h |
Table 1 Simulation parameters
Parameter | Value |
---|---|
Channel type | 3GPP CDL-C and UMa[ |
Carrier frequency | 2 GHz |
Bandwidth | 10 MHz |
32 | |
1 | |
Number of subcarriers | 32 |
Feedback interval | 1 ms |
UE speed | 30 km/h |
1 | CHEN W S, LIN X Q, LEE J, et al. 5G-advanced toward 6G: past, present, and future [J]. IEEE journal on selected areas in communications, 2023, 41(6): 1592–1619. DOI: 10.1109/JSAC.2023.3274037 |
2 | CHEN W, LIU Y W, JAFARKHANI H, et al. Signal processing and learning for next generation multiple access in 6G [J]. IEEE journal of selected topics in signal processing, 2024, 18(7): 1146–1177. DOI: 10.1109/JSTSP.2024.3511403 |
3 | WEN C K, SHIH W T, JIN S. Deep learning for massive MIMO CSI feedback [J]. IEEE wireless communications letters, 2018, 7(5): 748–751. DOI: 10.1109/LWC.2018.2818160 |
4 | GAO Y CHEN J J, LI D P. Intelligence driven wireless networks in B5G and 6G era: a survey [J]. ZTE communications, 2024, 22(3): 99–105. DOI: 10.12142/ZTECOM.202403012 |
5 | YANG B LIANG X, LIU S N, et al. Intelligent 6G wireless network with multi-dimensional information perception [J]. ZTE communications, 2023, 21(2): 3–10. DOI: 10.12142/ZTECOM.202302002 |
6 | GUO Y R, CHEN W, SUN F F, et al. Deep learning for CSI feedback: one-sided model and joint multi-module learning perspectives [EB/OL]. (2024-05-09)[2024-12-12]. |
7 | CHENG J M, CHEN W, XU J L, et al. Swin Transformer-based CSI feedback for massive MIMO [C]//The 23rd International Conference on Communication Technology (ICCT). IEEE, 2023: 809–814. DOI: 10.1109/ICCT59356.2023.10419637 |
8 | YI X P, YANG S, GESBERT D, et al. The degrees of freedom region of temporally correlated MIMO networks with delayed CSIT [J]. IEEE transactions on information theory, 2014, 60(1): 494–514. DOI: 10.1109/TIT.2013.2284500 |
9 | MIHAI S, YAQOOB M, HUNG D V, et al. Digital twins: a survey on enabling technologies, challenges, trends and future prospects [J]. IEEE communications surveys & tutorials, 2022, 24(4): 2255–2291. DOI: 10.1109/COMST.2022.3208773 |
10 | TAN J SHA X B, DAI B, et al. Analysis of industrial Internet of Things and digital twins [J]. ZTE communications, 2021, 19(2): 53–60. DOI: 10.12142/ZTECOM.202102007 |
11 | YIN H F, WANG H Q, LIU Y Z, et al. Addressing the curse of mobility in massive MIMO with prony-based angular-delay domain channel predictions [J]. IEEE journal on selected areas in communications, 2020, 38(12): 2903–2917. DOI: 10.1109/JSAC.2020.3005473 |
12 | BADDOUR K E, BEAULIEU N C. Autoregressive modeling for fading channel simulation [J]. IEEE transactions on wireless communications, 2005, 4(4): 1650–1662. DOI: 10.1109/TWC.2005.850327 |
13 | JIANG W, SCHOTTEN H D. Neural network-based fading channel prediction: A comprehensive overview [J]. IEEE access, 2019, 7: 118112–118124. DOI: 10.1109/ACCESS.2019.2937588 |
14 | JIANG W, SCHOTTEN H D. Deep learning for fading channel prediction [J]. IEEE open journal of the communications society, 2020, 1: 320–332. DOI: 10.1109/OJCOMS.2020.2982513 |
15 | JIANG H, CUI M Y, NG D W K, et al. Accurate channel prediction based on transformer: making mobility negligible [J]. IEEE journal on selected areas in communications, 2022, 40(9): 2717–2732. DOI: 10.1109/JSAC.2022.3191334 |
16 | REN Z Z, ZHANG X D, WANG J T. Joint CSI feedback and prediction with deep learning in high-speed scenarios [C]//Proceedings of IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2024: 1910–1915. DOI: 10.1109/ICCC62479.2024.10681972 |
17 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]//Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015: 1–9. DOI: 10.1109/CVPR.2015.7298594 |
18 | GAO Z Y, TAN C, WU L R, et al. SimVP: Simpler yet better video prediction [C]//Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022: 3160–3170. DOI: 10.1109/CVPR52688.2022.00317 |
19 | XU J L, AI B, CHEN W, et al. Wireless image transmission using deep source channel coding with attention modules [J]. IEEE transactions on circuits and systems for video technology, 2022, 32(4): 2315–2328. DOI: 10.1109/TCSVT.2021.3082521 |
20 | XU J L, AI B, WANG N, et al. Deep joint source-channel coding for CSI feedback: an end-to-end approach [J]. IEEE journal on selected areas in communications, 2023, 41(1): 260–273. DOI: 10.1109/JSAC.2022.3221963 |
21 | YANG K, WANG S X, DAI J C, et al. WITT: a wireless image transmission transformer for semantic communications [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1–5. DOI: 10.1109/ICASSP49357.2023.10094735 |
22 | DENG L T ZHAO Y R. Deep learning-based semantic feature extraction: a literature review and future directions [J]. ZTE communications, 2023, 21(2): 11–17. DOI: 10.12142/ZTECOM.202302003 |
23 | 3GPP. Study on channel model for frequencies from 0.5 to 100 GHz: TR 38.901 V18.0.0 [S]. 2024 |
24 | WU C, YI X P, ZHU Y M, et al. Channel prediction in high-mobility massive MIMO: from spatio-temporal autoregression to deep learning [J]. IEEE journal on selected areas in communications, 2021, 39(7): 1915–1930. DOI: 10.1109/JSAC.2021.3078503 |
25 | YUAN J D, NGO H Q, MATTHAIOU M. Machine learning-based channel prediction in massive MIMO with channel aging [J]. IEEE transactions on wireless communications, 2020, 19(5): 2960–2973. DOI: 10.1109/TWC.2020.2969627 |
26 | JAECKEL S, RASCHKOWSKI L, BÖRNER K, et al. Quasi deterministic radio channel generator, user manual and documentation [R]. Berlin, Germany: QuaDRiGa, 2021 |
[1] | TANG Chenyue, LI Zeshen, CHEN Zihan, YANG Howard H.. Device Activity Detection and Channel Estimation Using Score-Based Generative Models in Massive MIMO [J]. ZTE Communications, 2025, 23(1): 53-62. |
[2] | WANG Chongchong, LI Yao, WANG Beibei, CAO Hong, ZHANG Yanyong. Point Cloud Processing Methods for 3D Point Cloud Detection Tasks [J]. ZTE Communications, 2023, 21(4): 38-46. |
[3] | GONG Panyin, ZHANG Guidong, ZHANG Zhigang, CHEN Xiao, DING Xuan. Research on Fall Detection System Based on Commercial Wi-Fi Devices [J]. ZTE Communications, 2023, 21(4): 60-68. |
[4] | XIE Xinyu, WU Yongpeng, YUAN Zhifeng, MA Yihua. Massive Unsourced Random Access Under Carrier Frequency Offset [J]. ZTE Communications, 2023, 21(3): 45-53. |
[5] | DENG Letian, ZHAO Yanru. Deep Learning-Based Semantic Feature Extraction: A Literature Review and Future Directions [J]. ZTE Communications, 2023, 21(2): 11-17. |
[6] | LU Ping, SHENG Bin, SHI Wenzhe. Scene Visual Perception and AR Navigation Applications [J]. ZTE Communications, 2023, 21(1): 81-88. |
[7] | FAN Guotian, WANG Zhibin. Intelligent Antenna Attitude Parameters Measurement Based on Deep Learning SSD Model [J]. ZTE Communications, 2022, 20(S1): 36-43. |
[8] | GAO Zhengguang, LI Lun, WU Hao, TU Xuezhen, HAN Bingtao. A Unified Deep Learning Method for CSI Feedback in Massive MIMO Systems [J]. ZTE Communications, 2022, 20(4): 110-115. |
[9] | ZHANG Jintao, HE Zhenqing, RUI Hua, XU Xiaojing. Spectrum Sensing for OFDMA Using Multicarrier Covariance Matrix Aware CNN [J]. ZTE Communications, 2022, 20(3): 61-69. |
[10] | SHAO Zhichao, YAN Wenjing, YUAN Xiaojun. Markovian Cascaded Channel Estimation for RIS Aided Massive MIMO Using 1‑Bit ADCs and Oversampling [J]. ZTE Communications, 2022, 20(1): 48-56. |
[11] | HE Hongye, YANG Zhiguo, CHEN Xiangning. Payload Encoding Representation from Transformer for Encrypted Traffic Classification [J]. ZTE Communications, 2021, 19(4): 90-97. |
[12] | XUE Songyan, LI Ang, WANG Jinfei, YI Na, MA Yi, Rahim TAFAZOLLI, Terence DODGSON. To Learn or Not to Learn:Deep Learning Assisted Wireless Modem Design [J]. ZTE Communications, 2019, 17(4): 3-11. |
[13] | ZHENG Xiaoqing, LU Yaping, PENG Haoyuan, FENG Jiangtao, ZHOU Yi, JIANG Min, MA Li, ZHANG Ji, JI Jie. Detecting Abnormal Start-Ups, Unusual Resource Consumptions of the Smart Phone: A Deep Learning Approach [J]. ZTE Communications, 2019, 17(2): 38-43. |
[14] | ZHENG Xiaoqing, CHEN Jun, SHANG Guoqiang. Deep Neural Network-Based Chinese Semantic Role Labeling [J]. ZTE Communications, 2017, 15(S2): 58-64. |
[15] | Stefano Buzzi, Carmen D’Andrea. Massive MIMO 5G Cellular Networks: mm-Wave vs. μ-Wave Frequencies [J]. ZTE Communications, 2017, 15(S1): 41-49. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 575
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 113
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||