ZTE Communications ›› 2025, Vol. 23 ›› Issue (1): 45-52.DOI: 10.12142/ZTECOM.202501006
• Special Topic • Previous Articles Next Articles
HE Shiwen1,2(), PENG Shilin1, DONG Haolei1, WANG Liangpeng2, AN Zhenyu2
Received:
2024-12-15
Online:
2025-03-25
Published:
2025-03-25
About author:
HE Shiwen ( shiwen.he.hn@csu.edu.cn) is a professor at the School of Computer Science and Engineering, Central South University, China. His research interests include basic theoretical research and standard protocol development in wireless cellular/satellite/WLAN communication and networking, distributed learning and optimization computing, data mining and intelligent analysis, as well as research and development of low-level implementation theory and application technology for open programmable AI-native communication prototype systems.Supported by:
HE Shiwen, PENG Shilin, DONG Haolei, WANG Liangpeng, AN Zhenyu. Exploration of NWDAF Development Architecture for 6G AI-Native Networks[J]. ZTE Communications, 2025, 23(1): 45-52.
Model | Accuracy/% |
---|---|
RNN | 94.74 |
LSTM | 94.87 |
XGBoost | 86.84 |
Table 1 Prediction accuracy of the three models
Model | Accuracy/% |
---|---|
RNN | 94.74 |
LSTM | 94.87 |
XGBoost | 86.84 |
1 | YANG B LIANG X, LIU S N, et al. Intelligent 6G wireless network with multi-dimensional information perception [J]. ZTE communications, 2023, 21( 2): 3– 10. DOI: 10.12142/ZTECOM.202302002 |
2 | CHEN Z R, ZHANG Z Y, YANG Z H. Big AI models for 6G wireless networks: opportunities, challenges, and research directions [J]. IEEE wireless communications, 2024, 31( 5): 164– 172. DOI: 10.1109/MWC.015.2300404 |
3 | HE S W, DONG H L, PENG S L, et al. Challenges and methods of constructing a verification system for endogenous intelligent communication in wireless networks [J]. Mobile communications, 2024, 48( 7): 2– 14. DOI: 10.3969/j.issn.1006-1010.20240629-0001 |
4 | GAO Y CHEN J J, LI D P. Intelligence driven wireless networks in B5G and 6G era: a survey [J]. ZTE communications, 2024, 22( 3): 99– 105. DOI: 10.12142/ZTECOM.202403012 |
5 | AGIWAL M, ROY A, SAXENA N. Next generation 5G wireless networks: a comprehensive survey [J]. IEEE communications surveys and tutorials, 2016, 18( 3): 1617– 1655. DOI: 10.1109/COMST.2016.2532458 |
6 | ZAIDI Z, FRIDERIKOS V, YOUSAF Z, et al. Will SDN be part of 5G? [J]. IEEE communications surveys and tutorials, 20( 4): 3220– 3258. DOI: 10.1109/comst.2018.2836315 |
7 | LUONG D H, THIEU H T, OUTTAGARTS A, et al. Cloudification and autoscaling orchestration for container-based mobile networks toward 5G: experimentation, challenges and perspectives [C]//Proc. IEEE 87th Vehicular Technology Conference (VTC Spring). IEEE, 2018: 1– 7. DOI: 10.1109/VTCSpring.2018.8417602 |
8 | QUAN Q. Intelligent and autonomous management in cloud-native future networks: a survey on related standards from an architectural perspective [J]. Future Internet, 2021, 13( 2), 42. DOI: 10.3390/fi13020042 |
9 | HE S W. An endogenous intelligent architecture for wireless communication networks [J]. Wireless networks, 2024, 30( 2): 1069– 1084. DOI: 10.1007/s11276-023-03545-9 |
10 | 3GPP. Technical specification group services and system aspects; achitecture enhancements for 5G system (5GS) to support network data analytics services: TS 23.288 [S]. 2023 |
11 | LEE J, SOLAT F, KIM T Y, et al. Federated learning-empowered mobile network management for 5G and beyond networks: from access to core [J]. IEEE communications surveys and tutorials, 2024, 26( 3): 2176– 2212. DOI: 10.1109/COMST.2024.3352910 |
12 | SAAD W, BENNIS M, CHEN M Z. A vision of 6G wireless systems: applications, trends, technologies, and open research problems [J]. IEEE network, 2020, 34( 3): 134– 142. DOI: 10.1109/MNET.001.1900287 |
13 | GKONIS P K, NOMIKOS N, TRAKADAS P, et al. Leveraging network data analytics function and machine learning for data collection, resource optimization, security and privacy in 6G networks [J]. IEEE access, 2024, 12: 21320– 21336. DOI: 10.1109/ACCESS.2024.3359992 |
14 | WU W, ZHOU C H, LI M S, et al. AI-native network slicing for 6G networks [J]. IEEE wireless communications, 29( 1): 96– 103. DOI: 10.1109/mwc.001.2100338 |
15 | MEKRACHE A, BOUTIBA K, KSENTINI A. Combining network data analytics function and machine learning for abnormal traffic detection in beyond 5G [C]//Proc. IEEE Global Communications Conference. IEEE, 2023: 1204– 1209. DOI: 10.1109/GLOBECOM54140.2023.10436766 |
16 | NISHA L K, KUMAR R. A smart data analytics system generating for 5G N/W system via ML based algorithms for the better communications [C]// Proc. 1st International Conference on Innovative Sustainable Technologies for Energy, Mechatronics, and Smart Systems (ISTEMS). IEEE, 2024: 1– 6. DOI: 10.1109/ISTEMS60181.2024.10560068 |
17 | SEVGICAN S, TURAN M, GÖKARSLAN K, et al. Intelligent network data analytics function in 5G cellular networks using machine learning [J]. Journal of communications and networks, 2020, 22( 3): 269– 280. DOI: 10.1109/JCN.2020.000019 |
18 | MANIAS D M, CHOUMAN A, SHAMI A. An NWDAF approach to 5G core network signaling traffic: analysis and characterization [C]//Proc. IEEE Global Communications Conference. IEEE, 2022: 6001– 6006. DOI: 10.1109/GLOBECOM48099.2022.10000989 |
19 | ZHANG C J, SHAN G Y, ROH B H. Fair federated learning for multi-task 6G NWDAF network anomaly detection [EB/OL]. ( 2024-09-25)[ 2024-10-09]. |
20 | SANTOS G L, ENDO P T, SADOK D, et al. When 5G meets deep learning: a systematic review [J]. Algorithms, 2020, 13( 9): 208. DOI: 10.3390/a13090208 |
21 | TEZERGIL B, ONUR E. Wireless backhaul in 5G and beyond: issues, challenges and opportunities [J]. IEEE communications surveys and tutorials, 2022, 24( 4): 2579– 2632. DOI: 10.1109/COMST.2022.3203578 |
22 | LY A, YAO Y D. A review of deep learning in 5G research: channel coding, massive MIMO, multiple access, resource allocation, and network security [J]. IEEE open journal of the communications society, 2021, 2: 396– 408. DOI: 10.1109/OJCOMS.2021.3058353 |
[1] | DU Ruolin, WEI Zhiqiang, YANG Zai. Integrated Sensing and Communication: Who Benefits More? [J]. ZTE Communications, 2024, 22(3): 37-47. |
[2] | YANG Bei, LIANG Xin, LIU Shengnan, JIANG Zheng, ZHU Jianchi, SHE Xiaoming. Intelligent 6G Wireless Network with Multi-Dimensional Information Perception [J]. ZTE Communications, 2023, 21(2): 3-10. |
[3] | LU Haitao, YAN Xincheng, ZHOU Qiang, DAI Jiulong, LI Rui. Key Intrinsic Security Technologies in 6G Networks [J]. ZTE Communications, 2022, 20(4): 22-31. |
[4] | WANG Pengfei, SONG Wei, SUN Geng, WEI Zongzheng, ZHANG Qiang. Air-Ground Integrated Low-Energy Federated Learning for Secure 6G Communications [J]. ZTE Communications, 2022, 20(4): 32-40. |
[5] | DUAN Xiangyang, KANG Honghui, ZHANG Jianjian. Autonomous Network Technology Innovation in Digital and Intelligent Era [J]. ZTE Communications, 2022, 20(4): 52-61. |
[6] | HOU Xiaolin, LI Xiang, WANG Xin, CHEN Lan, SUYAMA Satoshi. Some Observations and Thoughts about Reconfigurable Intelligent Surface Application for 5G Evolution and 6G [J]. ZTE Communications, 2022, 20(1): 14-20. |
[7] | YUAN Yifei, GU Qi, WANG Anna, WU Dan, LI Ya. Recent Progress in Research and Development of Reconfigurable Intelligent Surface [J]. ZTE Communications, 2022, 20(1): 3-13. |
[8] | WU Huici, LI Hanjie, TAO Xiaofeng. Green Air-Ground Integrated Heterogeneous Network in 6G Era [J]. ZTE Communications, 2021, 19(1): 39-47. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||