ZTE Communications ›› 2024, Vol. 22 ›› Issue (3): 21-28.DOI: 10.12142/ZTECOM.202403004
• Special Topic • Previous Articles Next Articles
YU Xiaohui, YU Shucheng, LIU Xiqing(), PENG Mugen
Received:
2024-08-04
Online:
2024-09-29
Published:
2024-09-29
About author:
YU Xiaohui received his BS degree from the School of Information Engineering, Guangdong University of Technology, China in 2023. He is currently working toward an MS degree at Beijing University of Posts and Telecommunications, China. His research interests include integrated sensing and communication, and wireless communication.Supported by:
YU Xiaohui, YU Shucheng, LIU Xiqing, PENG Mugen. On Normalized Least Mean Square Based Interference Cancellation Algorithm for Integrated Sensing and Communication Systems[J]. ZTE Communications, 2024, 22(3): 21-28.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202403004
Parameter | Value |
---|---|
Rician factor | 13 dB |
Channel taps | 10 |
Modulation | QPSK, 16 QAM |
Subcarrier space ( | 30 kHz |
FFT length | 512 |
Communication channel type | EPA, ETU, EVA |
Equalizer | MMSE |
SIR | -60 dB |
SGD step size ( | 0.01, 0.1 |
RLS forgetting factor ( | 0.99, 0.9 |
NLMS small value ( | 0.001 |
Table 1 Simulation parameters
Parameter | Value |
---|---|
Rician factor | 13 dB |
Channel taps | 10 |
Modulation | QPSK, 16 QAM |
Subcarrier space ( | 30 kHz |
FFT length | 512 |
Communication channel type | EPA, ETU, EVA |
Equalizer | MMSE |
SIR | -60 dB |
SGD step size ( | 0.01, 0.1 |
RLS forgetting factor ( | 0.99, 0.9 |
NLMS small value ( | 0.001 |
Algorithm | Number of Additions per Iteration | Number of Multiplications per Iteration |
---|---|---|
SGD | ||
NLMS | ||
RLS |
Table 2 Computational complexity of SGD, NLMS, and RLS algorithm [ 29]
Algorithm | Number of Additions per Iteration | Number of Multiplications per Iteration |
---|---|---|
SGD | ||
NLMS | ||
RLS |
1 | BAQUERO BARNETO C, RIIHONEN T, TURUNEN M, et al. Full-duplex OFDM radar with LTE and 5G NR waveforms: challenges, solutions, and measurements [J]. IEEE transactions on microwave theory and techniques, 2019, 67( 10): 4042– 4054. DOI: 10.1109/TMTT.2019.2930510 |
2 | ZHENG L, LOPS M, ELDAR Y C, et al. Radar and communication coexistence: an overview: a review of recent methods [J]. IEEE signal processing magazine, 2019, 36( 5): 85– 99. DOI: 10.1109/MSP.2019.2907329 |
3 | LIU F, CUI Y H, MASOUROS C, et al. Integrated sensing and communications: toward dual-functional wireless networks for 6G and beyond [J]. IEEE journal on selected areas in communications, 2022, 40( 6): 1728– 1767. DOI: 10.1109/JSAC.2022.3156632 |
4 | CHEN S J, CHENG R S. Clustering for interference alignment in multiuser interference network [J]. IEEE transactions on vehicular technology, 2014, 63( 6): 2613– 2624. DOI: 10.1109/TVT.2013.2292897 |
5 | HONG B Q, WANG W Q, LIU C C. Interference utilization for spectrum sharing radar-communication systems [J]. IEEE transactions on vehicular technology, 2021, 70( 8): 8304– 8308. DOI: 10.1109/TVT.2021.3092410 |
6 | BABAEI A, TRANTER W H, BOSE T. A nullspace-based precoder with subspace expansion for radar/communications coexistence [C]//Proc. IEEE Global Communications Conference (GLOBECOM). IEEE, 2013: 3487– 3492. DOI: 10.1109/GLOCOM.2013.6831613 |
7 | MAHAL J A, KHAWAR A, ABDELHADI A, et al. Spectral coexistence of MIMO radar and MIMO cellular system [J]. IEEE transactions on aerospace and electronic systems, 2017, 53( 2): 655– 668. DOI: 10.1109/TAES.2017.2651698 |
8 | CADAMBE V R, JAFAR S ALI. Interference alignment and degrees of freedom of the K-user interference channel [J]. IEEE transactions on information theory, 2008, 54( 8): 3425– 3441. DOI: 10.1109/TIT.2008.926344 |
9 | LI B, PETROPULU A P. Joint transmit designs for coexistence of MIMO wireless communications and sparse sensing radars in clutter [J]. IEEE transactions on aerospace and electronic systems, 2017, 53( 6): 2846– 2864. DOI: 10.1109/TAES.2017.2717518 |
10 | QIAN J H, HE Z S, HUANG N, et al. Transmit designs for spectral coexistence of MIMO radar and MIMO communication systems [J]. IEEE transactions on circuits and systems II: express briefs, 2018, 65( 12): 2072– 2076. DOI: 10.1109/TCSII.2018.2822845 |
11 | CHENG Z Y, LIAO B, SHI S N, et al. Co-design for overlaid MIMO radar and downlink MISO communication systems via Cramér-Rao bound minimization [J]. IEEE transactions on signal processing, 2019, 67( 24): 6227– 6240. DOI: 10.1109/TSP.2019.2952048 |
12 | ZHENG L, LOPS M, WANG X D, et al. Joint design of overlaid communication systems and pulsed radars [J]. IEEE transactions on signal processing, 2018, 66( 1): 139– 154. DOI: 10.1109/TSP.2017.2755603 |
13 | TUYEN LE A, HUANG X J, DING C, et al. An in-band full-duplex prototype with joint self-interference cancellation in antenna, analog, and digital domains [J]. IEEE transactions on microwave theory and techniques, 2024, 72( 9): 5540– 5549. DOI: 10.1109/TMTT.2024.3364113 |
14 | HONG Z H, ZHANG L, WU Y Y, et al. Iterative successive nonlinear self-interference cancellation for In-band full-duplex communications [J]. IEEE transactions on broadcasting, 2024, 70( 1): 2– 13. DOI: 10.1109/TBC.2023.3291136 |
15 | MALAYTER J R, LOVE D J. A low-latency precoding strategy for In-band full-duplex MIMO relay systems [J]. IEEE transactions on wireless communications, 2024, 23( 3): 1899– 1912. DOI: 10.1109/TWC.2023.3292985 |
16 | HONG Z H, ZHANG L, LI W, et al. Frequency-domain RF self-interference cancellation for in-band full-duplex communications [J]. IEEE transactions on wireless communications, 2023, 22( 4): 2352– 2363. DOI: 10.1109/TWC.2022.3211196 |
17 | HUANG X J, TUYEN LE A, GUO Y J. Joint analog and digital self-interference cancellation for full duplex transceiver with frequency-dependent I/Q imbalance [J]. IEEE transactions on wireless communications, 2023, 22( 4): 2364– 2378. DOI: 10.1109/TWC.2022.3211316 |
18 | KIAYANI A, WAHEED M Z, ANTTILA L, et al. Adaptive nonlinear RF cancellation for improved isolation in simultaneous transmit–receive systems [J]. IEEE transactions on microwave theory and techniques, 2018, 66( 5): 2299– 2312. DOI: 10.1109/TMTT.2017.2786729 |
19 | STURM C, WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing [J]. Proceedings of the IEEE, 2011, 99( 7): 1236– 1259. DOI: 10.1109/JPROC.2011.2131110 |
20 | KESKIN M F, WYMEERSCH H, KOIVUNEN V. Monostatic sensing with OFDM under phase noise: From mitigation to exploitation [J]. IEEE transactions on signal processing, 2023, 71: 1363– 1378. DOI: 10.1109/TSP.2023.3266976 |
21 | XIA X C, XU K, ZHANG D M, et al. Beam-domain full-duplex massive MIMO: realizing co-time co-frequency uplink and downlink transmission in the cellular system [J]. IEEE transactions on vehicular technology, 2017, 66( 10): 8845– 8862. DOI: 10.1109/TVT.2017.2698160 |
22 | LIU F, GARCIA-RODRIGUEZ A, MASOUROS C, et al. Interfering channel estimation for radar and communication coexistence [C]//Proc. IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2019: 1– 5. DOI: 10.1109/SPAWC.2019.8815575 |
23 | WU K, ZHANG J A, HUANG X J, et al. Integrating low-complexity and flexible sensing into communication systems [J]. IEEE journal on selected areas in communications, 2022, 40( 6): 1873– 1889. DOI: 10.1109/JSAC.2022.3156649 |
24 | WEI Z Q, QU H Y, WANG Y, et al. Integrated sensing and communication signals toward 5G-A and 6G: a survey [J]. IEEE Internet of Things journal, 2023, 10( 13): 11068– 11092. DOI: 10.1109/JIOT.2023.3235618 |
25 | LUO Y J, BI L H, ZHAO D. Adaptive digital self-interference cancellation based on fractional order LMS in LFMCW radar [J]. Journal of systems engineering and electronics, 2021, 32( 3): 573– 583. DOI: 10.23919/JSEE.2021.000049 |
26 | QUAN X, LIU Y, PAN W S, et al. A two-stage analog cancellation architecture for self-interference suppression in full-duplex communications [C]//Proc. IEEE MTT-S International Microwave Symposium (IMS). IEEE, 2017: 1169– 1172. DOI: 10.1109/MWSYM.2017.8058808 |
27 | DOTY J M, JACKSON R W, GOECKEL D L. Analog cancellation of a known remote interference: Hardware realization and analysis [J]. IEEE wireless communications letters, 2024, 13( 3): 829– 833. DOI: 10.1109/LWC.2023.3346290 |
28 | HAYKIN S. Adaptive Filter Theory (5th Ed.)[M]. Upper Saddle River, USA: Prentice Hall, 2014. |
29 | CIOLINO S. On the use of wavelet packets in ultra wideband pulse shape modulation systems [J]. IEICE transactions on fundamentals of electronics, communications and computer sciences, 2005, E88-A( 9): 2310– 2317. DOI: 10.1093/ietfec/e88-a.9.2310 |
[1] | WANG Jilin, ZENG Xianlong, YANG Yonghui, PENG Lin, LI Lingxiang. Tensor Decomposition-Based Channel Estimation and Sensing for Millimeter Wave MIMO-OFDM V2I Systems [J]. ZTE Communications, 2024, 22(3): 56-68. |
[2] | ZHANG Jintao, HE Zhenqing, RUI Hua, XU Xiaojing. Spectrum Sensing for OFDMA Using Multicarrier Covariance Matrix Aware CNN [J]. ZTE Communications, 2022, 20(3): 61-69. |
[3] | ZHANG Chong, XING Wang, YUAN Jinhong, ZHOU Yiqing. Performance of LDPC Coded OTFS Systems over High Mobility Channels [J]. ZTE Communications, 2021, 19(4): 45-53. |
[4] | LIU Mengmeng, LI Shuangyang, ZHANG Chunqiong, WANG Boyu, BAI Baoming. Coded Orthogonal Time Frequency Space Modulation [J]. ZTE Communications, 2021, 19(4): 54-62. |
[5] | SUN Jingyun, LIU Zhen, WU Yang. M‑IRSA: Multi‑Packets Transmitted Irregular Repetition Slotted Aloha [J]. ZTE Communications, 2020, 18(4): 62-68. |
[6] | Zekeriyya Esat Ankaralı, Berker Peköz, Hüseyin Arslan. Enhanced OFDM for 5G RAN [J]. ZTE Communications, 2017, 15(S1): 11-20. |
[7] | GUO Mengqi, ZHOU Ji, TANG Xizi, QIAO Yaojun. Layered ACO-FOFDM for IM/DD Systems [J]. ZTE Communications, 2017, 15(3): 56-62. |
[8] | WANG Shuang, HOU Ronghui. Network Coding-Based Interference Management Scheme in D2D Communications [J]. ZTE Communications, 2017, 15(2): 48-54. |
[9] | SUN Yang, CHANG Yongyu, WANG Chao, ZHANG Lu, ZHANG Yu, and WANG Xinhui. Research on Interference Cancellation for Switched-on Small Cells in Ultra Dense Network [J]. ZTE Communications, 2016, 14(S1): 48-53. |
[10] | WEI Zhiqiang, YUAN Jinhong, Derrick Wing Kwan Ng, Maged Elkashlan, DING Zhiguo. A Survey of Downlink Non-Orthogonal Multiple Access for 5G Wireless Communication Networks [J]. ZTE Communications, 2016, 14(4): 17-25. |
[11] | Mohamed Sufyan Islim, Harald Haas. Modulation Techniques for Li-Fi [J]. ZTE Communications, 2016, 14(2): 29-40. |
[12] | Hung-Chang Chien, Jianjun Yu, Zhensheng Jia, and Ze Dong. Terabit Superchannel Transmission: A Nyquist-WDM Approach [J]. ZTE Communications, 2012, 10(4): 39-44. |
[13] | Jiangnan Xiao, Zizheng Cao, Fan Li, Jin Tang, and Lin Chen. Flipped-Exponential Nyquist Pulse Technique to Optimize PAPR in Optical Direct-Detection OFDM Systems [J]. ZTE Communications, 2012, 10(3): 16-21. |
[14] | Zhensheng Jia, Jianjun Yu, Hung-Chang Chien, Ze Dong, and Di Huo. Field Transmission of 100G and Beyond: Multiple Baud Rates and Mixed Line Rates Using Nyquist-WDM Technology [J]. ZTE Communications, 2012, 10(3): 28-38. |
[15] | Wei-Ren Peng, Itsuro Morita, Hidenori Takahashi, and Takehiro Tsuritani. Greater than 200 Gb/s Transmission Using Direct-Detection Optical OFDM Superchannel [J]. ZTE Communications, 2012, 10(1): 10-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||