ZTE Communications ›› 2022, Vol. 20 ›› Issue (S1): 72-78.DOI: 10.12142/ZTECOM.2022S1010
• Review • Previous Articles
Online:2022-01-25
Published:2022-03-01
About author:HAN Jiren (HAN Jiren, GAO Yin. General Introduction of Non-Terrestrial Networks for New Radio[J]. ZTE Communications, 2022, 20(S1): 72-78.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.2022S1010
| Platform | Altitude Range/km | Orbit | Typical Beam Footprint Size/km |
|---|---|---|---|
| LEO satellite | 300–1 500 | Circular around the earth | 100–1 000 |
| MEO satellite | 7 000–25 000 | 100–1 000 | |
| GEO satellite | 35 786 | Notional station keeping position fixed in terms of elevation/azimuth with respect to a given earth point | 200–3 500 |
| UAS platform (including HAPS) | 8–50 (20 for HAPS) | 5–200 | |
| HEO satellite | 400–50 000 | Elliptical around the earth | 200–3 500 |
Table 1 Types of NTN platforms
| Platform | Altitude Range/km | Orbit | Typical Beam Footprint Size/km |
|---|---|---|---|
| LEO satellite | 300–1 500 | Circular around the earth | 100–1 000 |
| MEO satellite | 7 000–25 000 | 100–1 000 | |
| GEO satellite | 35 786 | Notional station keeping position fixed in terms of elevation/azimuth with respect to a given earth point | 200–3 500 |
| UAS platform (including HAPS) | 8–50 (20 for HAPS) | 5–200 | |
| HEO satellite | 400–50 000 | Elliptical around the earth | 200–3 500 |
| Non-Terrestrial Access Network | Transparent Satellite | Regenerative Satellite |
|---|---|---|
| GEO based non-terrestrial access network | Scenario A | Scenario B |
LEO based non-terrestrial access network: steerable beams | Scenario C1 | Scenario D1 |
LEO based non-terrestrial access network: beams moving with the satellite | Scenario C2 | Scenario D2 |
Table 2 Reference scenarios
| Non-Terrestrial Access Network | Transparent Satellite | Regenerative Satellite |
|---|---|---|
| GEO based non-terrestrial access network | Scenario A | Scenario B |
LEO based non-terrestrial access network: steerable beams | Scenario C1 | Scenario D1 |
LEO based non-terrestrial access network: beams moving with the satellite | Scenario C2 | Scenario D2 |
Figure 6 Dual connectivity involving (a) transparent NTN-based NG-RAN and cellular NG-RAN and (b) regenerative NTN-based NG-RAN (gNB-DU) and cellular NG-RAN
| NTN Handover Scenario | Transparent Satellite | Regenerative Satellite (gNB on Board) | Regenerative Satellite (gNB-DU on Board) |
|---|---|---|---|
| Intra-satellite handover | Intra-gNB handover procedure or inter-gNB handover procedure | Intra-gNB handover procedure | Intra-gNB-CU mobility/intra-gNB-DU handover or inter-gNB-CU handover |
| Inter-satellite handover | Inter-gNB handover procedure or intra-gNB handover procedure | Inter-gNB handover procedure | Intra-gNB-CU mobility/inter-gNB-DU mobility or inter-gNB-CU handover |
| Inter-access handover | Inter AMF/UPF handover procedure or intra AMF/UPF handover procedure (out of RAN scope) | Intra-gNB handover procedure or inter-gNB hanover procedure |
Table 3 NG-RAN procedures versus NTN handover scenarios
| NTN Handover Scenario | Transparent Satellite | Regenerative Satellite (gNB on Board) | Regenerative Satellite (gNB-DU on Board) |
|---|---|---|---|
| Intra-satellite handover | Intra-gNB handover procedure or inter-gNB handover procedure | Intra-gNB handover procedure | Intra-gNB-CU mobility/intra-gNB-DU handover or inter-gNB-CU handover |
| Inter-satellite handover | Inter-gNB handover procedure or intra-gNB handover procedure | Inter-gNB handover procedure | Intra-gNB-CU mobility/inter-gNB-DU mobility or inter-gNB-CU handover |
| Inter-access handover | Inter AMF/UPF handover procedure or intra AMF/UPF handover procedure (out of RAN scope) | Intra-gNB handover procedure or inter-gNB hanover procedure |
| 1 |
RINALDI F, H-LMAATTANEN, TORSNER J, et al. Non-terrestrial networks in 5G & beyond: a survey [J]. IEEE access, 2020, 8: 165178–1652008. DOI: 10.1109/ACCESS.2020.3022981
DOI URL |
| 2 |
TIAN K B, YANG Z, ZHANG N.Prospects for the air-space-ground integrated network technology [J]. ZTE technology journal, 2021, 27(5):2-6. DOI:10.12142/ZTETJ.202105002
DOI |
| 3 | 3GPP. Solutions for NR to support non-terrestrial networks (release 16): 3GPP TR38.821 [S]. 2020 |
| 4 | 3GPP. NG-RAN, architecture description (release 16): 3GPP TS 38.401 [S]. 2020 |
| 5 | 3GPP. Study on new radio (NR) to support non-terrestrial networks (release 15): 3GPP TR38.811 [S]. 2020 |
| 6 | Thales. On NTN feeder link switch over: 3GPP R3-205173 [R]. 2020 |
| 7 | ZTE. Initial thoughts on NTN LEO feeder link switch-over: 3GPP R3-204666 [R]. 2020. |
| 8 | 3GPP. RAN3 chairman notes [C]//3GPP RAN3#111-eMeeting. 3GPP, 2021 |
| 9 | 3GPP. Support non-terrestrial networks: R2-2100229, Stg 2 Running CR_38.300_NR-NTN-solutions [R]. 2021 |
| [1] | CHENG Lei, QIN Shuang, FENG Gang. Learning-Based Admission Control for Low-Earth-Orbit Satellite Communication Networks [J]. ZTE Communications, 2023, 21(3): 54-62. |
| [2] | LI Hanwen, BI Ningjing, SHA Jin. Design of Raptor-Like LDPC Codes and High Throughput Decoder Towards 100 Gbit/s Throughput [J]. ZTE Communications, 2023, 21(3): 86-92. |
| [3] | XU Xinyi, LIU Shengli, YU Guanding. Adaptive Retransmission Design for Wireless Federated Edge Learning [J]. ZTE Communications, 2023, 21(1): 3-14. |
| [4] | SHI Xiangyi, HAN Tongzhou, TIAN Hai, ZHAO Danfeng. Design of Raptor-Like Rate Compatible SC-LDPC Codes [J]. ZTE Communications, 2022, 20(S1): 16-21. |
| [5] | MA Yiyan, MA Guoyu, WANG Ning, ZHONG Zhangdui, AI Bo. OTFS Enabled NOMA for MMTC Systems over LEO Satellite [J]. ZTE Communications, 2021, 19(4): 63-70. |
| [6] | YAN Xincheng, TENG Huiyun, PING Li, JIANG Zhihong, ZHOU Na. Study on Security of 5G and Satellite Converged Communication Network [J]. ZTE Communications, 2021, 19(4): 79-89. |
| [7] | ZHANG Man, LI Dapeng, LIU Zhuang, GAO Yin. QoE Management for 5G New Radio [J]. ZTE Communications, 2021, 19(3): 64-72. |
| [8] | DENG Xu, ZHU Lidong. Resource Allocation Strategy Based on Matching Game [J]. ZTE Communications, 2020, 18(4): 10-17. |
| [9] | ZHANG Jing, WEI Xiao, CHENG Junfeng, FENG Xu. Satellite E2E Network Slicing Based on 5G Technology [J]. ZTE Communications, 2020, 18(4): 26-33. |
| [10] | SUN Chenhua, YIN Bo, LI Xudong, TIAN Xing, PANG Ce. Adaptability Analysis of IP Routing Protocol in Broadband LEO Constellation Systems [J]. ZTE Communications, 2020, 18(4): 34-44. |
| [11] | SUN Jingyun, LIU Zhen, WU Yang. M‑IRSA: Multi‑Packets Transmitted Irregular Repetition Slotted Aloha [J]. ZTE Communications, 2020, 18(4): 62-68. |
| [12] | CHANG Su-Wei, LIN Chueh-Jen, TSAI Wen-Tsai, HUNG Tzu-Chieh, HUANG Po-Chia. Design of Millimeter-Wave Antenna-in-Package (AiP) for 5G NR [J]. ZTE Communications, 2020, 18(3): 26-32. |
| [13] | GAO Yin, LI Dapeng, HAN Jiren, LIU Zhuang, LIU Yang. RAN Centric Data Collection for New Radio [J]. ZTE Communications, 2019, 17(3): 23-30. |
| [14] | GAO Yin, HAN Jiren, LIU Zhuang, LIU Yang, HUANG He. General Architecture of Centralized Unit and Distributed Unit for New Radio [J]. ZTE Communications, 2018, 16(2): 23-31. |
| [15] | YUAN Yifei, WANG Xinhui. 5G New Radio: Physical Layer Overview [J]. ZTE Communications, 2017, 15(S1): 3-10. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
