ZTE Communications ›› 2022, Vol. 20 ›› Issue (S1): 64-71.DOI: 10.12142/ZTECOM.2022S1009
• Research Paper • Previous Articles Next Articles
LI Zhongya1,3,, CHEN Rui2,3,, HUANG Xingang2, ZHANG Junwen1,3,, NIU Wenqing1,3,, LU Qiuyi1,3,, CHI Nan1()
Received:
2021-07-25
Online:
2022-01-25
Published:
2022-03-01
About author:
LI Zhongya is with the Department of Communication Science and Engineering, School of Information Science and Technology, Fudan University, China.|CHEN Rui is with the Department of Communication Science and Engineering, School of Information Science and Technology, Fudan University, China.|HUANG Xingang is a senior expert of technical pre-research of ZTE Corporation. He received the M.S. degree in physics from Xi’an Jiaotong University, China in 2008. He is engaged in the research of optical access technology, especially in WDM-PON, TWDM-PON, NG-EPON, 50 G PON.|ZHANG Junwen is with the Department of Communication Science and Engineering, School of Information Science and Technology, Fudan University, China.|NIU Wenqing is with the Department of Communication Science and Engineering, School of Information Science and Technology, Fudan University, China.|LU Qiuyi is with the Department of Communication Science and Engineering, School of Information Science and Technology, Fudan University, China.|CHI Nan (Supported by:
LI Zhongya, CHEN Rui, HUANG Xingang, ZHANG Junwen, NIU Wenqing, LU Qiuyi, CHI Nan. SVM for Constellation Shaped 8QAM PON System[J]. ZTE Communications, 2022, 20(S1): 64-71.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.2022S1009
Figure 2 (a) Flow chart of SVM classifier, (b) nonlinear distortions of the three constellations and (c) their influences on hyperplanes of the SVM classifier
Figure 3 (a) Simulation setup of constellation shaped 8QAM PON system, (b) spectrum of the transmitted signal and (c) electro-absorption modulator (EAM) transmission characteristic
Methods | Training | Prediction | ||
---|---|---|---|---|
Additions | Multiplications | Additions | Multiplications | |
LMS | ||||
LMS-VOT | ||||
SVM [ |
Table 2 Computational complexity
Methods | Training | Prediction | ||
---|---|---|---|---|
Additions | Multiplications | Additions | Multiplications | |
LMS | ||||
LMS-VOT | ||||
SVM [ |
1 | IEEE. Physical layer specifications and management parameters for 25 Gbit/s and 50 Gbit/s passive optical networks: IEEE 802.3ca Task Force [S]. 2018 |
2 |
HOUTSMA V, DVAN VEEN. Optical strategies for economical next generation 50 and 100G PON [C]//Optical Fiber Communication Conference. OFC, 2019. DOI:10.1364/ofc.2019.m2b.1
DOI URL |
3 |
JI H L, YI L L, LI Z X, et al. Field demonstration of a real-time 100-Gbit/s PON based on 10G-class optical devices [J]. Journal of lightwave technology, 2017, 35(10): 1914–1921. DOI: 10.1109/JLT.2016.2633482
DOI URL |
4 |
HOUTSMA V, DVAN VEEN. Demonstration of symmetrical 25 Gbit/s TDM-PON with 31.5 dB optical power budget using only 10 Gbit/s optical components [C]//2015 European Conference on Optical Communication. IEEE, 2015: 1–3. DOI:10.1109/ECOC.2015.7341691
DOI URL |
5 |
WEI J L, EISELT N, GRIESSER H, et al. Demonstration of the first real-time end-to-end 40-Gbit/s PAM-4 for next-generation access applications using 10- Gbit/s transmitter [J]. Journal of lightwave technology, 2016, 34(7): 1628–1635. DOI:10.1109/JLT.2016.2518748
DOI URL |
6 | IEEE. Ethernet amendment 10: media access control parameters, physical layers, and management parameters for 200 Gbit/s and 400 Gbit/s 802.3bs-2017: IEEE 802.3bs-2017 [S]. 2017 |
7 |
ZHANG J, YU J J, CHIEN H, et al. Demonstration of 100 Gbit/s/λ PAM-4 TDM-PON supporting 29 dB power budget with 50 km reach using 10 G class O-band DML transmitters [C]//Optical Fiber Communication Conference Postdeadline Papers. OSA, 2019. DOI:10.1364/ofc.2019.th4c.3
DOI URL |
8 |
ZHANG J W, YU J J, LI F, et al. 11 × 5 × 93 Gbit/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrierless amplitude and phase modulation with direct detection [J]. Optics express, 2013, 21(16): 18842. DOI:10.1364/oe.21.018842
DOI URL |
9 |
WEI J L, INGHAM J D, CUNNINGHAM D G, et al. Performance and power dissipation comparisons between 28 Gbit/s NRZ, PAM, CAP and optical OFDM systems for data communication applications [J]. Journal of lightwave technology, 2012, 30(20): 3273–3280. DOI:10.1109/JLT.2012.2213797
DOI URL |
10 |
YIN S, HOUTSMA V, DVAN VEEN, et al. Optical amplified 40-Gbit/s symmetrical TDM-PON using 10-Gbit/s optics and DSP [J]. Journal of lightwave technology, 2017, 35(4): 1067–1074. DOI: 10.1109/JLT.2016.2614767
DOI URL |
11 |
WANG C, DU J B, CHEN G Y, et al. QAM classification methods by SVM machine learning for improved optical interconnection [J]. Optics communications, 2019, 444: 1–8. DOI: 10.1016/j.optcom.2019.03.058
DOI URL |
12 |
NIU W Q, HA Y, CHI N. Support vector machine based machine learning method for GS 8QAM constellation classification in seamless integrated fiber and visible light communication system [J]. Science China information sciences, 2020, 63(10): 202306. DOI: 10.1007/s11432-019-2850-3
DOI URL |
13 |
SAIN S R. The nature of statistical learning theory [J]. Technometrics, 1996, 38(4): 409. DOI: 10.1080/00401706.1996.10484565
DOI URL |
14 |
HSU C W, LIN C J. A comparison of methods for multiclass support vector machines [J]. IEEE transactions on neural networks, 2002, 13(2): 415–425. DOI: 10.1109/72.991427
DOI URL |
15 |
JOACHIMS T. Training linear SVMs in linear time [C]//The 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2006: 217–226. DOI: 10.1145/1150402.1150429
DOI URL |
16 | KEERTHI S S, DECOSTE D. A modified finite Newton method for fast solution of large scale linear SVMs [J]. Journal of machine learning research, 2005, 6(12):341-361 |
17 | CHEN K Z, CHEN L W, LIN C Y, et al. 224-Gbit/s transmission for next-generation WDM long-reach PON using CAP modulation [C]//2016 Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2016: 1–3 |
18 |
STOJANOVIC N, KARINOU F, QIANG Z, et al. Volterra and Wiener equalizers for short-reach 100 G PAM-4 applications [J]. Journal of lightwave technology, 2017, 35(21): 4583–4594. DOI: 10.1109/JLT.2017.2752363
DOI URL |
19 |
BURGES C J C. A tutorial on support vector machines for pattern recognition [J]. Data mining and knowledge discovery, 1998, 2(2): 121–167. DOI: 10.1023/A: 1009715923555
DOI URL |
[1] | ZHANG Weiliang, YUAN Liquan. Higher Speed Passive Optical Networks for Low Latency Services [J]. ZTE Communications, 2021, 19(2): 61-66. |
[2] | SUN Lin, DU Jiangbing, HUA Feng, TANG Ningfeng, HE Zuyuan. Adaptive and Intelligent Digital Signal Processing for Improved Optical Interconnection [J]. ZTE Communications, 2020, 18(2): 57-73. |
[3] | Jianjun Yu. Digital Signal Processing for Optical Access Networks [J]. ZTE Communications, 2014, 12(4): 40-48. |
[4] | Jianqiang Li, Ekawit Tipsuwannakul, Magnus Karlsson, and Peter A. Andrekson. Exploiting the Faster-Than-Nyquist Concept in Wavelength-Division Multiplexing Systems Using Duobinary Shaping [J]. ZTE Communications, 2012, 10(1): 23-29. |
[5] | Fan Zhang. Compensating for Nonlinear Effects in Coherent-Detection Optical Transmission Systems [J]. ZTE Communications, 2012, 10(1): 45-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||