ZTE Communications ›› 2023, Vol. 21 ›› Issue (3): 54-62.DOI: 10.12142/ZTECOM.202303008
• Research Papers • Previous Articles Next Articles
CHENG Lei, QIN Shuang(), FENG Gang
Received:
2022-07-22
Online:
2023-09-21
Published:
2023-03-22
About author:
CHENG Lei received her BS degree in communication engineering from University of Electronic Science and Technology of China (UESTC) in 2019. She now is pursuing her PhD degree at the National Key Laboratory of Wireless Communications, UESTC. Her research interests include resource management and network control in space-air-ground/satellite-terrestrial integrated networks by using optimization theory and machine learning techniques.|QIN Shuang (Supported by:
CHENG Lei, QIN Shuang, FENG Gang. Learning-Based Admission Control for Low-Earth-Orbit Satellite Communication Networks[J]. ZTE Communications, 2023, 21(3): 54-62.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202303008
Parameter | Value |
---|---|
Number of services | 3 |
Number of beam cell channels | 100 |
Average call duration parameter | 1/30 s |
Call arrival rate ratio | 0.2:0.3:0.5 |
Decision period | 5 s |
Maximum number of calls | 50 |
Balance factor | 0.4, 0.6 |
Balance factor | 0.2, 0.3, 0.5 |
FCR normalized fixed threshold setting | [0.73, 0.75, 0.82, 0.85, 0.86, 1] |
HPFCR normalized fixed threshold setting | [0.73, 0.75, 0.73, 0.85, 0.73, 1] |
DCR normalized initial threshold setting | [0.73, 0.75, 0.82, 0.85, 0.86, 1] |
Number of periods played | 20 000 |
Total call arrival rate | 2–25 calls/s |
Table 1 Simulation parameters
Parameter | Value |
---|---|
Number of services | 3 |
Number of beam cell channels | 100 |
Average call duration parameter | 1/30 s |
Call arrival rate ratio | 0.2:0.3:0.5 |
Decision period | 5 s |
Maximum number of calls | 50 |
Balance factor | 0.4, 0.6 |
Balance factor | 0.2, 0.3, 0.5 |
FCR normalized fixed threshold setting | [0.73, 0.75, 0.82, 0.85, 0.86, 1] |
HPFCR normalized fixed threshold setting | [0.73, 0.75, 0.73, 0.85, 0.73, 1] |
DCR normalized initial threshold setting | [0.73, 0.75, 0.82, 0.85, 0.86, 1] |
Number of periods played | 20 000 |
Total call arrival rate | 2–25 calls/s |
Parameter | Value |
---|---|
Discount factor | 0.99 |
Learning rate of policy | 0.002 |
Learning rate of value function | 0.005 |
Action selection variance | 0.05 |
Table 2 AC algorithm parameters
Parameter | Value |
---|---|
Discount factor | 0.99 |
Learning rate of policy | 0.002 |
Learning rate of value function | 0.005 |
Action selection variance | 0.05 |
1 |
LIU J J, SHI Y P, FADLULLAH Z M, et al. Space-air-ground integrated network: a survey [J]. IEEE communications surveys & tutorials, 2018, 20(4): 2714–2741. DOI: 10.1109/COMST.2018.2841996
DOI URL |
2 |
DING R, CHEN T T, LIU L, et al. 5G integrated satellite communication systems: architectures, air interface, and standardization [C]//International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2020: 702–707. DOI: 10.1109/WCSP49889.2020.9299757
DOI URL |
3 |
DENG R Q, DI B Y, ZHANG H L, et al. Ultra-dense LEO satellite constellation design for global coverage in terrestrial-satellite networks [C]//Global Communications Conference. IEEE, 2021: 1–6. DOI: 10.1109/GLOBECOM42002.2020.9322362
DOI URL |
4 |
DUAN C F, DUAN R Q, FENG J, et al. A novel channel allocation strategy in low earth orbit satellite networks [C]//6th International Conference on Computer and Communications (ICCC). IEEE, 2021: 8–13. DOI: 10.1109/ICCC51575.2020.9345173
DOI URL |
5 |
ZHOU J, YE X G, PAN Y, et al. Dynamic channel reservation scheme based on priorities in LEO satellite systems [J]. Journal of systems engineering and electronics, 2015, 26(1): 1–9. DOI: 10.1109/JSEE.2015.00001
DOI URL |
6 |
LI Z W, XIE Z C, LIANG X W. Dynamic channel reservation strategy based on DQN algorithm for multi-service LEO satellite communication system [J]. IEEE wireless communications letters, 2021, 10(4): 770–774. DOI: 10.1109/LWC.2020.3043073
DOI URL |
7 |
MARAL G, RESTREPO J, DEL RE E, et al. Performance analysis for a guaranteed handover service in an LEO constellation with a “satellite-fixed cell” system [J]. IEEE transactions on vehicular technology, 1998, 47(4): 1200–1214. DOI: 10.1109/25.728509
DOI URL |
8 |
WANG X L, WANG X X. The research of channel reservation strategy in LEO satellite network [C]//11th International Conference on Dependable, Autonomic and Secure Computing. IEEE, 2014: 590–594. DOI: 10.1109/DASC.2013.131
DOI URL |
9 |
BOUKHATEM L, GAITI D, PUJOLLE G. A channel reservation algorithm for handover issues in LEO satellite systems based on a satellite-fixed cell coverage [C]//IEEE VTS 53rd Vehicular Technology Conference. IEEE, 2001: 2975–2979. DOI: 10.1109/VETECS.2001.944147
DOI URL |
10 |
BEYLOT A L, BOUMERDASSI S. Adaptive channel reservation schemes in multitraffic LEO satellite systems [C]//IEEE Global Telecommunications Conference. IEEE, 2002: 2740–2743. DOI: 10.1109/GLOCOM.2001.966272
DOI URL |
11 |
ZOU Q Y, ZHU L D. Dynamic channel allocation strategy of satellite communication systems based on grey prediction [C]//International Symposium on Networks, Computers and Communications (ISNCC). IEEE, 2019: 1–5. DOI: 10.1109/ISNCC.2019.8909122
DOI URL |
12 |
CHATTERJEE S, SAHA J, BANERJEE S, et al. Neighbour Location Based Channel Reservation scheme for LEO Satellite communication [C]//International Conference on Communications, Devices and Intelligent Systems (CODIS). IEEE, 2012: 73–76. DOI: 10.1109/CODIS.2012.6422139
DOI URL |
13 |
RAHMAN M, WALINGO T, TAKAWIRA F. Adaptive handover scheme for LEO satellite communication system [C]//Proceedings of AFRICON. IEEE, 2015: 1–5. DOI: 10.1109/AFRCON.2015.7332051
DOI URL |
14 |
CHEN L M, GUO Q, WANG H Y. A handover management scheme based on adaptive probabilistic resource reservation for multimedia LEO satellite networks [C]//WASE International Conference on Information Engineering. IEEE, 2010: 255–259. DOI: 10.1109/ICIE.2010.67
DOI URL |
15 |
LIU S J, HU X, WANG W D. Deep reinforcement learning based dynamic channel allocation algorithm in multibeam satellite systems [J]. IEEE access, 2018, 6: 15733–15742. DOI: 10.1109/ACCESS.2018.2809581
DOI URL |
16 |
CHOWDHURY P K, ATIQUZZAMAN M, IVANCIC W. Handover schemes in satellite networks: state-of-the-art and future research directions [J]. IEEE communications surveys & tutorials, 2006, 8(4): 2–14. DOI: 10.1109/COMST.2006.283818
DOI URL |
17 |
BHATNAGAR S, SUTTON R S, GHAVAMZADEH M, et al. Natural actor‑critic algorithms [J]. Automatica, 2009, 45(11): 2471–2482. DOI: 10.1016/j.automatica.2009.07.008
DOI URL |
[1] | ZHANG Jing, WEI Xiao, CHENG Junfeng, FENG Xu. Satellite E2E Network Slicing Based on 5G Technology [J]. ZTE Communications, 2020, 18(4): 26-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||