ZTE Communications ›› 2023, Vol. 21 ›› Issue (2): 40-52.DOI: 10.12142/ZTECOM.202302007
• Special Topic • Previous Articles Next Articles
AWADA Uchechukwu1, ZHANG Jiankang2(), CHEN Sheng3,4, LI Shuangzhi1, YANG Shouyi1
Received:
2023-03-11
Online:
2023-06-13
Published:
2023-06-13
About author:
Uchechukwu AWADA is currently working toward a PhD degree at the School of Information Engineering, Zhengzhou University, China. His current research interests include edge computing, cloud computing, aerial computing, distributed systems, IoT, IoV and wireless communications. He is a student member of the ACM.|ZHANG Jiankang (Supported by:
AWADA Uchechukwu, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi. Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing[J]. ZTE Communications, 2023, 21(2): 40-52.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202302007
Notation | Description | Notation | Description |
---|---|---|---|
A set of edge deployments | A vehicle, a set of vehicles | ||
Individual application or task | Container-instance or node in a cluster | ||
CPU and memory resources | Resource capacity or availability of a node | ||
A set of containerized applications | Resource capacity/availability in an edge | ||
Application resource requirements | Resources used for execution | ||
Individual edge deployment or cluster | CPU, memory resource used for execution | ||
Closest edge deployment or cluster | Actual resources usage of jobs | ||
Actual CPU, memory resources usage | Application/task start, completion time | ||
Application or task execution time | Cluster resource utilization | ||
Cluster CPU, memory resource utilization | A job, a set of jobs |
Table 1 Notations
Notation | Description | Notation | Description |
---|---|---|---|
A set of edge deployments | A vehicle, a set of vehicles | ||
Individual application or task | Container-instance or node in a cluster | ||
CPU and memory resources | Resource capacity or availability of a node | ||
A set of containerized applications | Resource capacity/availability in an edge | ||
Application resource requirements | Resources used for execution | ||
Individual edge deployment or cluster | CPU, memory resource used for execution | ||
Closest edge deployment or cluster | Actual resources usage of jobs | ||
Actual CPU, memory resources usage | Application/task start, completion time | ||
Application or task execution time | Cluster resource utilization | ||
Cluster CPU, memory resource utilization | A job, a set of jobs |
Edge Deployment | Edge Device | CPU Capacity | MemoryCapacity/GiB |
---|---|---|---|
Edge 1 | Acer aiSage (x2) | 12 Cores | 4 |
Edge 2 | AWS Snowcone (x10) | 20 Cores | 40 |
Edge 3 | Huawei AR502H Series (x6) | 24 Cores | 12 |
Edge 4 | HIVECELL (x6) | 36 Cores | 48 |
Edge 5 | NVIDIA Jetson Xavier NX (x3) | 36 Cores | 24 |
Edge 6 | INTELLIEDGE G700 (x5) | 48 Cores | 80 |
Table 2 Edge deployments and their resource capacities
Edge Deployment | Edge Device | CPU Capacity | MemoryCapacity/GiB |
---|---|---|---|
Edge 1 | Acer aiSage (x2) | 12 Cores | 4 |
Edge 2 | AWS Snowcone (x10) | 20 Cores | 40 |
Edge 3 | Huawei AR502H Series (x6) | 24 Cores | 12 |
Edge 4 | HIVECELL (x6) | 36 Cores | 48 |
Edge 5 | NVIDIA Jetson Xavier NX (x3) | 36 Cores | 24 |
Edge 6 | INTELLIEDGE G700 (x5) | 48 Cores | 80 |
Multi-Job | NAEE | ||||
---|---|---|---|---|---|
Table 3 Multi-job execution, where the actual resources consumed for multi-job execution dTc,?m??are taken from the original Alibaba data and the estimated resource demands dT?c,?m'are calculated by linear regression model
Multi-Job | NAEE | ||||
---|---|---|---|---|---|
1 |
KHAN L U, YAQOOB I, TRAN N H, et al. Edge-computing-enabled smart cities: a comprehensive survey [J]. IEEE Internet of Things journal, 2020, 7(10): 10200–10232. DOI: 10.1109/JIOT.2020.2987070
DOI |
2 |
AMIN S U, HOSSAIN M S. Edge intelligence and Internet of Things in healthcare: a survey [J]. IEEE access, 2020, 9: 45–59. DOI: 10.1109/ACCESS.2020.3045115
DOI |
3 |
LIU Y J, WANG S G, ZHAO Q L, et al. Dependency-aware task scheduling in vehicular edge computing [J]. IEEE Internet of Things journal, 2020, 7(6): 4961–4971. DOI: 10.1109/JIOT.2020.2972041
DOI |
4 |
SHEN Q Q, HU B J, XIA E J. Dependency-aware task offloading and service caching in vehicular edge computing [J]. IEEE transactions on vehicular technology, 2022, 71(12): 13182–13197. DOI: 10.1109/TVT.2022.3196544
DOI |
5 |
REN H, LIU K, JIN F, et al. Dependency-aware task offloading via end-edge-cloud cooperation in heterogeneous vehicular networks [C]//25th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2022: 1420–1426. DOI: 10.1109/ITSC55140.2022.9922334 .
DOI |
6 |
LIU S S, LIU L K, TANG J, et al. Edge computing for autonomous driving: opportunities and challenges [J]. Proceedings of the IEEE, 2019, 107(8): 1697–1716. DOI: 10.1109/jproc.2019.2915983
DOI |
7 |
MAHMUD R, TOOSI A N, RAMAMOHANARAO K, et al. Context-aware placement of industry 4.0 applications in fog computing environments [J]. IEEE transactions on industrial informatics, 2020, 16(11): 7004–7013. DOI: 10.1109/TII.2019.2952412
DOI |
8 |
OTHMAN M M, EL-MOUSA A. Internet of Things & cloud computing Internet of Things as a service approach [C]//11th International Conference on Information and Communication Systems (ICICS). IEEE, 2020: 318–323. DOI: 10.1109/ICICS49469.2020.239503
DOI |
9 |
REN J, ZHANG D Y, HE S W, et al. A survey on end-edge-cloud orchestrated network computing paradigms: transparent computing, mobile edge computing, fog computing, and cloudlet [J]. ACM computing surveys, 2020, 52(6): 1–36. DOI: 10.1145/3362031
DOI |
10 |
HWANG J, NKENYEREYE L, SUNG N, et al. IoT service slicing and task offloading for edge computing [J]. IEEE Internet of Things journal, 2021, 8(14): 11526–11547. DOI: 10.1109/jiot.2021.3052498
DOI |
11 |
ALMUTAIRI J, ALDOSSARY M. A novel approach for IoT tasks offloading in edge-cloud environments [J]. Journal of cloud computing, 2021, 10(1): 1–19. DOI: 10.1186/s13677-021-00243-9
DOI |
12 |
AWADA U, ZHANG J K, CHEN S, et al. Air-to-air collaborative learning: a multi-task orchestration in federated aerial computing [C]//14th International Conference on Cloud Computing (CLOUD). IEEE, 2021: 671–680. DOI: 10.1109/CLOUD53861.2021.00086
DOI |
13 |
AWADA U, ZHANG J K, CHEN S, et al. AirEdge: a dependency-aware multi-task orchestration in federated aerial computing [J]. IEEE transactions on vehicular technology, 2022, 71(1): 805–819. DOI: 10.1109/TVT.2021.3127011
DOI |
14 |
TU Y F, DONG Z J, YANG H Z. Key Technologies and application of edge computing [J]. ZTE communications, 2017, 15(2): 26-34. DOI: 10.3969/j.issn.1673-5188.2017.02.004
DOI |
15 |
LI X W, ZHAO L, YU K P, et al. A cooperative resource allocation model for IoT applications in mobile edge computing [J]. Computer communications, 2021, 173: 183–191. DOI: 10.1016/j.comcom.2021.04.005
DOI |
16 |
LI J, LIANG W F, XU W Z, et al. Maximizing user service satisfaction for delay-sensitive IoT applications in edge computing [J]. IEEE transactions on parallel and distributed systems, 2022, 33(5): 1199–1212. DOI: 10.1109/TPDS.2021.3107137
DOI |
17 |
ZHAN C, HU H, LIU Z, et al. Multi-UAV-enabled mobile-edge computing for time-constrained IoT applications [J]. IEEE Internet of Things journal, 2021, 8(20): 15553–15567. DOI: 10.1109/JIOT.2021.3073208
DOI |
18 |
LI J, LIANG W F, XU W Z, et al. Service home identification of multiple-source IoT applications in edge computing [J]. IEEE transactions on services computing, 2023, 16(2): 1417–1430. DOI: 10.1109/TSC.2022.3176576
DOI |
19 |
LIU J L, LIU C H, WANG B, et al. Optimized task allocation for IoT application in mobile-edge computing [J]. IEEE Internet of Things journal, 2022, 9(13): 10370–10381. DOI: 10.1109/JIOT.2021.3091599
DOI |
20 |
HAN S N, LI X H, SUN C, et al. RecCac: Recommendation-empowered cooperative edge caching for internet of things [J]. ZTE communications, 2021, 19(2): 2–10. DOI: 10.12142/ZTECOM.202102002
DOI |
21 |
LIU C H, LIU K, GUO S T, et al. Adaptive offloading for time-critical tasks in heterogeneous Internet of vehicles [J]. IEEE Internet of Things journal, 2020, 7(9): 7999–8011. DOI: 10.1109/JIOT.2020.2997720
DOI |
22 |
RAMPERSAUD S, GROSU D. Sharing-aware online virtual machine packing in heterogeneous resource clouds [J]. IEEE transactions on parallel and distributed systems, 2017, 28(7): 2046–2059. DOI: 10.1109/TPDS.2016.2641937
DOI |
23 |
HONG Z C, CHEN W H, HUANG H W, et al. Multi-hop cooperative computation offloading for industrial IoT-edge-cloud computing environments [J]. IEEE transactions on parallel and distributed systems, 2019, 30(12): 2759–2774. DOI: 10.1109/TPDS.2019.2926979
DOI |
[1] | WU Zhihui, HONG Yuxuan, ZHOU Enyuan, LIU Lei, PEI Qingqi. Utilizing Certificateless Cryptography for IoT Device Identity Authentication Protocols in Web3 [J]. ZTE Communications, 2024, 22(2): 30-38. |
[2] | YANG Yibing, LIU Ming, XU Rongtao, WANG Gongpu, GONG Wei. Link Budget and Enhanced Communication Distance for Ambient Internet of Things [J]. ZTE Communications, 2024, 22(1): 16-23. |
[3] | LUO Haoran, HU Shuisong, WANG Wenyong, TANG Yuke, ZHOU Junwei. Research on Multi-Core Processor Analysis for WCET Estimation [J]. ZTE Communications, 2024, 22(1): 87-94. |
[4] | CHEN Jiajun, GAO Yin, LIU Zhuang, LI Dapeng. Future Vision on Artificial Intelligence Assisted Green Energy Efficiency Network [J]. ZTE Communications, 2023, 21(2): 34-39. |
[5] | HUANG Rui, LI Huilin, ZHANG Yongmin. Efficient Bandwidth Allocation and Computation Configuration in Industrial IoT [J]. ZTE Communications, 2023, 21(1): 55-63. |
[6] | CAI Weibo, YANG Shulin, SUN Gang, ZHANG Qiming, YU Hongfang. Adaptive Load Balancing for Parameter Servers in Distributed Machine Learning over Heterogeneous Networks [J]. ZTE Communications, 2023, 21(1): 72-80. |
[7] | ZHAO Zipiao, ZHAO Yongli, YAN Boyuan, WANG Dajiang. Auxiliary Fault Location on Commercial Equipment Based on Supervised Machine Learning [J]. ZTE Communications, 2022, 20(S1): 7-15. |
[8] | CAO Yinfeng, CAO Jiannong, WANG Yuqin, WANG Kaile, LIU Xun. Security in Edge Blockchains: Attacks and Countermeasures [J]. ZTE Communications, 2022, 20(4): 3-14. |
[9] | NAN Yucen, FANG Minghao, ZOU Xiaojing, DOU Yutao, Albert Y. ZOMAYA. A Collaborative Medical Diagnosis System Without Sharing Patient Data [J]. ZTE Communications, 2022, 20(3): 3-16. |
[10] | CUI Ziqi, WANG Gongpu, WANG Zhigang, AI Bo, XIAO Huahua. Symbiotic Radio Systems: Detection and Performance Analysis [J]. ZTE Communications, 2022, 20(3): 93-98. |
[11] | HAN Suning, LI Xiuhua, SUN Chuan, WANG Xiaofei, LEUNG Victor C. M.. RecCac: Recommendation-Empowered Cooperative Edge Caching for Internet of Things [J]. ZTE Communications, 2021, 19(2): 2-10. |
[12] | TAN Jie, SHA Xiubin, DAI Bo, LU Ting. Analysis of Industrial Internet of Things and Digital Twins [J]. ZTE Communications, 2021, 19(2): 53-60. |
[13] | LIU Zhuang, GAO Yin, LI Dapeng, CHEN Jiajun, HAN Jiren. Enabling Energy Efficiency in 5G Network [J]. ZTE Communications, 2021, 19(1): 20-29. |
[14] | LIN Xinhua, ZHANG Jing, LI Qiang. Cluster Head Selection Algorithm for UAV Assisted Clustered IoT Network Utilizing Blockchain [J]. ZTE Communications, 2021, 19(1): 30-38. |
[15] | SHI Wenqi, SUN Yuxuan, HUANG Xiufeng, ZHOU Sheng, NIU Zhisheng. Scheduling Policies for Federated Learning in Wireless Networks: An Overview [J]. ZTE Communications, 2020, 18(2): 11-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||