ZTE Communications ›› 2022, Vol. 20 ›› Issue (2): 48-62.DOI: 10.12142/ZTECOM.202202008
• Review • Previous Articles
CHANG Mingyang, HAN Jiaqi, MA Xiangjin, XUE Hao, WU Xiaonan, LI Long(), CUI Tiejun()
Received:
2022-04-18
Online:
2022-06-25
Published:
2022-05-24
About author:
CHANG Mingyang received the BE degree in electronic information science and technology from Yantai University, China in 2018. He is currently pursuing the PhD degree in electromagnetic fields and microwave technology at Xidian University, China. His research interests include wireless power transfer, wireless energy harvesting, metasurfaces, and simultaneous wireless information and power transfer.|HAN Jiaqi received the BE degree in electronic and information engineering from Henan Normal University, China in 2014, and the PhD degree in electromagnetic fields and microwave technology from Xidian University, China in 2019. He is currently a post-doctoral fellow with the School of Electronic Engineering, Xidian University. His research interests include the design of programmable metasurfaces and their applications on wireless power transfer and computational imaging.|MA Xiangjin received the BE degree in communication engineering from Nanchang Institute of Technology, China in 2019. He is currently pursuing the PhD degree in electromagnetic field and microwave technology at Xidian University, China. His current research interests include analysis and application of programmable metasurfaces, design of high-performance programmable metasurfaces and microwave holographic imaging.|XUE Hao received the BE degree in electronic and information engineering from Xidian University, China in 2015. He is currently pursuing the PhD degree in electronic science and technology at Xidian University. His research interests include antenna design, metasurface, wireless power transfer, and OAM vortex beam. He received the honors and awards include the National scholarship for postgraduates 2017, the Best Student Paper Awards of IEEE iWAT 2018, and IEEE IMWS-AMP 2021.|WU Xiaonan received the BE degree in electronic information engineering from Xidian University, China in 2020. He is currently pursuing the master’s degree in electromagnetic field and microwave technology at Xidian University. His research interests include wireless power transfer, wireless energy harvesting, design of metasurfaces, and simultaneous wireless information and power transfer.|LI Long (Supported by:
CHANG Mingyang, HAN Jiaqi, MA Xiangjin, XUE Hao, WU Xiaonan, LI Long, CUI Tiejun. Programmable Metasurface for Simultaneously Wireless Information and Power Transfer System[J]. ZTE Communications, 2022, 20(2): 48-62.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202202008
Figure 1 Different forms of wireless information and power transfers (WIPT): (a) SWIPT with co-located receivers; (b) SWIPT with separated receivers; (c) wirelessly powered communication networks (WPCN); (d) wirelessly powered backscatter communication (WPBC); (e) our proposed structure
Figure 2 Application scenarios of the programmable metasurface (PMS) scheme for the simultaneous wireless information and power transfers (SWIPT) system
Figure 10 Coding patterns and E-field distribution of the near-field focused beam, where (a), (d) and (g) describe the focus (0 m, 0 m, 0.5 m); (b), (e) and (h) describe the focus (0.2 m, 0.2 m, 0.5 m); (c), (f) and (i) describe the dual focus (0.2 m, 0.2 m, 0.5 m) and (-0.2 m, -0.2 m, 0.5 m)
Figure 12 Measured results of the focusing E-field distribution of the 2-bit PMS at (a) (0 m, 0 m, 0.75 m), (b) (0.1m, 0 m, 0.75 m), (c) (0.1 m, 0.1 m, 0.75 m), and (d) (0 m, 0 m, 0.9 m)
1 |
ANDREWS J G, BUZZI S, CHOI W, et al., What will 5G be [J]. IEEE journal on selected areas in communications, 2014, 32(6): 1065–1082. DOI: 10.1109/JSAC.2014.2328098
DOI |
2 |
HU R Q, QIAN Y. An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems [J]. IEEE communications magazine, 2014, 52(5): 94–101. DOI: 10.1109/mcom.2014.6815898
DOI |
3 |
AL-FUQAHA A, GUIZANI M, MOHAMMADI M, et al. Internet of Things: a survey on enabling technologies, protocols, and applications [J]. IEEE communications surveys & tutorials, 2015, 17(4): 2347–2376. DOI: 10.1109/COMST.2015.2444095
DOI |
4 |
VARSHNEY L R. Transporting information and energy simultaneously [C]//Proceedings of 2008 IEEE International Symposium on Information Theory. IEEE, 2008: 1612–1616. DOI: 10.1109/ISIT.2008.4595260
DOI |
5 |
PONNIMBADUGE P T D, JAYAKODY D N K, SHARMA S K, et al. Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges [J]. IEEE communications surveys & tutorials, 2018, 20(1): 264–302. DOI: 10.1109/COMST.2017.2783901
DOI |
6 |
CLERCKX B, ZHANG R, SCHOBER R, et al. Fundamentals of wireless information and power transfer: from RF energy harvester models to signal and system designs [J]. IEEE journal on selected areas in communications, 2019, 37(1): 4–33. DOI: 10.1109/JSAC.2018.2872615
DOI |
7 |
ZHANG R, HO C K. MIMO broadcasting for simultaneous wireless information and power transfer [J]. IEEE transactions on wireless communications, 2013, 12(5): 1989–2001. DOI: 10.1109/TWC.2013.031813.120224
DOI |
8 |
HUANG K B, LARSSON E G. Simultaneous information-and-power transfer for broadband downlink systems [C]//IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013. DOI: 10.1109/ICASSP.2013.6638500
DOI |
9 |
DIAMANTOULAKIS P D, KARAGIANNIDIS G K, DING Z G. Simultaneous lightwave information and power transfer (SLIPT) [J]. IEEE transactions on green communications and networking, 2018, 2(3): 764–773. DOI: 10.1109/TGCN.2018.2818325
DOI |
10 |
DO T P, SONG I, KIM Y H. Simultaneous wireless transfer of power and information in a decode-and-forward two-way relaying network [J]. IEEE transactions on wireless communications, 2017, 16(3): 1579–1592. DOI: 10.1109/TWC.2017.2648801
DOI |
11 |
ZHOU X, ZHANG R, HO C K. Wireless information and power transfer: architecture design and rate-energy tradeoff [J]. IEEE transactions on communications, 2013, 61(11): 4754–4767. DOI: 10.1109/TCOMM.2013.13.120855
DOI |
12 |
KRIKIDIS I, TIMOTHEOU S, NIKOLAOU S, et al. Simultaneous wireless information and power transfer in modern communication systems [J]. IEEE communications magazine, 2014, 52(11): 104–110. DOI: 10.1109/MCOM.2014.6957150
DOI |
13 |
CHEN H, LI Y H, JIANG Y X, et al. Distributed power splitting for SWIPT in relay interference channels using game theory [J]. IEEE transactions on wireless communications, 2015, 14(1): 410–420. DOI: 10.1109/TWC.2014.2349892
DOI |
14 |
KHAN T A, ALKHATEEB A, HEATH R W. Millimeter wave energy harvesting [J]. IEEE transactions on wireless communications, 2016, 15(9): 6048–6062. DOI: 10.1109/TWC.2016.2577582
DOI |
15 |
XIA M H, AISSA S. On the efficiency of far-field wireless power transfer [J]. IEEE transactions on signal processing, 2015, 63(11): 2835–2847. DOI: 10.1109/TSP.2015.2417497
DOI |
16 |
LIU H W, KIM K J, KWAK K S, et al. Power splitting-based SWIPT with decode-and-forward full-duplex relaying [J]. IEEE transactions on wireless communications, 2016, 15(11): 7561–7577. DOI: 10.1109/TWC.2016.2604801
DOI |
17 |
LU X, WANG P, NIYATO D, et al. Wireless charging technologies: Fundamentals, standards, and network applications [J]. IEEE communications surveys & tutorials, 2016, 18(2): 1413–1452. DOI: 10.1109/COMST.2015.2499783
DOI |
18 |
NG D W K, LO E S, SCHOBER R. Wireless information and power transfer: energy efficiency optimization in OFDMA systems [J]. IEEE transactions on wireless communications, 2013, 12(12): 6352–6370. DOI: 10.1109/TWC.2013.103113.130470
DOI |
19 |
KURS A, KARALIS A, MOFFATT R, et al. Wireless power transfer via strongly coupled magnetic resonances [J]. Science, 2007, 317(5834): 83–86. DOI: 10.1126/science.1143254
DOI |
20 |
MAYORDOMO I, DRÄGER T, SPIES P, et al. An overview of technical challenges and advances of inductive wireless power transmission [J]. Proceedings of the IEEE, 2013, 101(6): 1302–1311. DOI: 10.1109/JPROC.2013.2243691
DOI |
21 |
COVIC G A, BOYS J T. Inductive power transfer [J]. Proceedings of the IEEE, 2013, 101(6): 1276–1289. DOI: 10.1109/JPROC.2013.2244536
DOI |
22 |
ZHANG Z, PANG H L, GEORGIADIS A, et al. Wireless power transfer: an overview [J]. IEEE transactions on industrial electronics, 2019, 66(2): 1044–1058. DOI: 10.1109/TIE.2018.2835378
DOI |
23 |
HUI S Y R, ZHONG W X, LEE C K. A critical review of recent progress in mid-range wireless power transfer [J]. IEEE transactions on power electronics, 2014, 29(9): 4500–4511. DOI: 10.1109/TPEL.2013.2249670
DOI |
24 |
BROWN W C. The history of power transmission by radio waves [J]. IEEE transactions on microwave theory and techniques, 1984, 32(9): 1230–1242. DOI: 10.1109/TMTT.1984.1132833
DOI |
25 |
BROWN W C. Status of the microwave power transmission components for the solar power satellite [J]. IEEE transactions on microwave theory and techniques, 1981, 29(12): 1319–1327. DOI: 10.1109/TMTT.1981.1130559
DOI |
26 |
SHINOHARA N. History and innovation of wireless power transfer via microwaves [J]. IEEE journal of microwaves, 2021, 1(1): 218–228. DOI: 10.1109/JMW.2020.3030896
DOI |
27 |
YANG B, CHEN X J, CHU J, et al. A 5.8-GHz phased array system using power-variable phase-controlled magnetrons for wireless power transfer [J]. IEEE transactions on microwave theory and techniques, 2020, 68(11): 4951–4959. DOI: 10.1109/TMTT.2020.3007187
DOI |
28 |
RODENBECK C T, JAFFE P I, STRASSNER B H, et al. Microwave and millimeter wave power beaming [J]. IEEE journal of microwaves, 2021, 1(1): 229–259. DOI: 10.1109/jmw.2020.3033992
DOI |
29 |
SHINOHARA N. Trends in wireless power transfer: WPT technology for energy harvesting, mllimeter-wave/THz rectennas, MIMO-WPT, and advances in near-field WPT applications [J]. IEEE microwave magazine, 2021, 22(1): 46–59. DOI: 10.1109/MMM.2020.3027935
DOI |
30 |
TAKABAYASHI N, SHINOHARA N, MITANI T, et al. Rectification improvement with flat-topped beams on 2.45-GHz rectenna arrays [J]. IEEE transactions on microwave theory and techniques, 2020, 68(3): 1151–1163. DOI: 10.1109/TMTT.2019.2951098
DOI |
31 |
WANG C, YANG B, SHINOHARA N. Study and design of a 2.45-GHz rectifier achieving 91% efficiency at 5-W input power [J]. IEEE microwave and wireless components letters, 2021, 31(1): 76–79. DOI: 10.1109/LMWC.2020.3032574
DOI |
32 |
CUI T J, SMITH D, LIU R P, et al. Metamaterials: theory, design and applications [M]. Heidelberg, Germany: Springer, 2010. DOI:10.1007/978-1-4419-0573-4
DOI |
33 |
YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333–337. DOI: 10.1126/science.1210713
DOI |
34 |
YU N, CAPASSO F. Flat optics with designer metasurfaces [J]. Nature materials, 2014, 13 (2): 139–150. DOI: 10.1038/nmat3839
DOI |
35 |
LIU R, JI C, MOCK J J, et al. Braodband groud-plane cloack [J]. Science, 2009, 323(5912): 336–369. DOI: 10.1126/science.1166949
DOI |
36 |
ZHOU J F, ZHANG P, HAN J Q, et al. Metamaterials and metasurfaces for wireless power transfer and energy harvesting [J]. Proceedings of the IEEE, 2022, 110(1): 31–55. DOI: 10.1109/JPROC.2021.3127493
DOI |
37 |
LI L, ZHANG P, CHENG F J, et al. An optically transparent near-field focusing metasurface [J]. IEEE transactions on microwave theory and techniques, 2021, 69(4): 2015–2027. DOI: 10.1109/TMTT.2021.3061475
DOI |
38 |
LI L, ZHANG X M, SONG C Y, et al. Compact dual-band, wide-angle, polarization- angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer [J]. IEEE transactions on microwave theory and techniques, 2021, 69(3): 1518–1528. DOI: 10.1109/TMTT.2020.3040962
DOI |
39 |
LI L, ZHANG X M, SONG C Y, et al. Progress, challenges, and perspective on metasurfaces for ambient radio frequency energy harvesting [J]. Applied physics letters, 2020, 116(6): 060501. DOI: 10.1063/1.5140966
DOI |
40 |
ERKMEN F, ALMONEEF T S, RAMAHI O M. Scalable electromagnetic energy harvesting using frequency-selective surfaces [J]. IEEE transactions on microwave theory and techniques, 2018, 66(5): 2433–2441. DOI: 10.1109/TMTT.2018.2804956
DOI |
41 |
ALMONEEF T S, RAMAHI O M. Metamaterial electromagnetic energy harvester with near unity efficiency [J]. Applied physics letters, 2015, 106(15): 153902. DOI: 10.1063/1.4916232
DOI |
42 |
ZHANG X M, LIU H X, LI L. Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting [J]. Applied physics letters, 2017, 111(7): 071902. DOI: 10.1063/1.4999327
DOI |
43 |
ALAVIKIA B, ALMONEEF T S, RAMAHI O M. Wideband resonator arrays for electromagnetic energy harvesting and wireless power transfer [J]. Applied physics letters, 2015, 107(24): 243902. DOI: 10.1063/1.4937591
DOI |
44 |
ZHANG P, YI H, LIU H X, et al. Back-to-back microstrip antenna design for broadband wide-angle RF energy harvesting and dedicated wireless power transfer [J]. IEEE access, 2020, 8: 126868–126875. DOI: 10.1109/ACCESS.2020.3008551
DOI |
45 |
ZHANG P, LI L, ZHANG X M, et al. Design, measurement and analysis of near-field focusing reflective metasurface for dual-polarization and multi-focus wireless power transfer [J]. IEEE access, 2019, 7: 110387–110399. DOI: 10.1109/ACCESS.2019.2934135
DOI |
46 |
YU S X, LIU H X, LI L. Design of near-field focused metasurface for high-efficient wireless power transfer with multifocus characteristics [J]. IEEE transactions on industrial electronics, 2019, 66(5): 3993–4002. DOI: 10.1109/TIE.2018.2815991
DOI |
47 |
CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials [J]. Light: science & applications, 2014, 3 (10): 218. DOI: 10.1038/lsa.2014.99
DOI |
48 |
HAN J Q, LI L, MA X J, et al. Adaptively smart wireless power transfer using 2-bit programmable metasurface [J]. IEEE transactions on industrial electronics, 2022, 69(8): 8524–8534. DOI: 10.1109/TIE.2021.3105988
DOI |
49 |
DAI J Y, TANG W K, CHEN M Z, et al. Wireless communication based on information metasurfaces [J]. IEEE transactions on microwave theory and techniques, 2021, 69(3): 1493–1510. DOI: 10.1109/TMTT.2021.3054662
DOI |
50 |
ZHANG L, CHEN X Q, LIU S, et al. Space-time-coding digital metasurfaces [J]. Nature communications, 2018, 9: 4334. DOI: 10.1038/s41467-018-06802-0
DOI |
51 |
ZHANG L, CUI T J. Space-time-coding digital metasurfaces: principles and applications [J]. Research, 2021: 1–25. DOI: 10.34133/2021/9802673
DOI |
52 |
WU H T, BAI G D, LIU S, et al. Information theory of metasurfaces [J]. National science review, 2020, 7(3): 561–571. DOI: 10.1093/nsr/nwz195
DOI |
53 |
CUI T J, LI L L, LIU S, et al. Information metamaterial systems [J]. IScience, 2020, 23(8): 101403. DOI: 10.1016/j.isci.2020.101403
DOI |
54 |
MA Q, CUI T J. Information Metamaterials: Bridging the physical world and digital world [J]. PhotoniX, 2020, 1: 1. DOI: 10.1186/s43074-020-00006-w
DOI |
55 |
ZHANG L, CHEN M Z, TANG W K, et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces [J]. Nature electronics, 2021, 4(3): 218–227. DOI: 10.1038/s41928-021-00554-4
DOI |
56 |
TANG W K, DAI J Y, CHEN M Z, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation [J]. IEEE journal on selected areas in communications, 2020, 38(11): 2683–2699. DOI: 10.1109/JSAC.2020.3007055
DOI |
57 |
CHEN M Z, TANG W K, DAI J Y, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface [J]. National science review, 2021, 9(1): 134. DOI: 10.1093/nsr/nwab134
DOI |
58 |
WU H, GAO X X, ZHANG L, et al. Harmonic information transitions of spatiotemporal metasurfaces [J]. Light: science & applications, 2020, 9: 198. DOI: 10.1038/s41377-020-00441-1
DOI |
59 |
ZHAO H T, SHUANG Y, WEI M L, et al. Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals [J]. Nature communications, 2020, 11: 3926. DOI: 10.1038/s41467-020-17808-y
DOI |
60 |
RUAN H X, LI L L. Imaging resolution analysis of single-frequency and single-sensor programmable microwave imager [J]. IEEE transactions on antennas and propagation, 2020, 68(11): 7727–7732. DOI: 10.1109/TAP.2020.2986653
DOI |
61 |
LI L, SHUANG Y, MA Q, et al. Intelligent metasurface imager and recognizer [J]. Light: science & applications, 2019, 8: 97. DOI: 10.1038/s41377-019-0209-z
DOI |
62 |
MA Q, BAI G D, JING H B, et al. Smart metasurface with self-adaptively reprogrammable functions [J]. Light: science & applications, 2019, 8: 98. DOI: 10.1038/s41377-019-0205-3
DOI |
63 |
LI L L, RUAN H X, LIU C, et al. Machine-learning reprogrammable metasurface imager [J]. Nature communications, 2019, 10(1): 1082. DOI: 10.1038/s41467-019-09103-2
DOI |
64 |
HUANG T J, TANG H H, TAN Y H, et al. Terahertz super-resolution imaging based on subwavelength metallic grating [J]. IEEE transactions on antennas and propagation, 2019, 67(5): 3358–3365. DOI: 10.1109/TAP.2019.2894260
DOI |
65 |
ELMOSSALLAMY M A, ZHANG H L, SONG L Y, et al. Reconfigurable intelligent surfaces for wireless communications: principles, challenges, and opportunities [J]. IEEE transactions on cognitive communications and networking, 2020, 6(3): 990–1002. DOI: 10.1109/TCCN.2020.2992604
DOI |
66 |
BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces [J]. IEEE access, 2019, 7: 116753–116773. DOI: 10.1109/ACCESS.2019.2935192
DOI |
67 |
WU Q Q, ZHANG R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming [J]. IEEE transactions on wireless communications, 2019, 18(11): 5394–5409. DOI: 10.1109/TWC.2019.2936025
DOI |
68 |
YANG X X, JIANG C, ELSHERBENI A Z, et al. A novel compact printed rectenna for data communication systems [J]. IEEE transactions on antennas and propagation, 2013, 61(5): 2532–2539. DOI: 10.1109/TAP.2013.2244550
DOI |
69 |
LU P, YANG X S, WANG B Z. A two-channel frequency reconfigurable rectenna for microwave power transmission and data communication [J]. IEEE transactions on antennas and propagation, 2017, 65(12): 6976–6985. DOI: 10.1109/TAP.2017.2766450
DOI |
70 |
CLARKE R H, BROWN J. Diffraction theory and antennas [M]. Chichester, UK: Halsted Press, 1980. DOI: 10.1016/0029-8018(81)90030-5
DOI |
71 |
HAN J Q, LI L, LIU G Y, et al. A wideband 1 bit 12 × 12 reconfigurable beam-scanning reflectarray: design, fabrication, and measurement [J]. IEEE antennas and wireless propagation letters, 2019, 18(6): 1268–1272. DOI: 10.1109/LAWP.2019.2914399
DOI |
72 |
ZHANG S, XUE H, CHANG M Y, et al. Generation of airy beams using an amplitude-phase-modulated metasurface [C]//Proceedings of 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications. IEEE, 2021: 332–334. DOI: 10.1109/IMWS-AMP53428.2021.9643966
DOI |
73 |
ZHANG W Z, SONG C Y, PEI R, et al. Broadband metasurface antenna using hexagonal loop-shaped unit cells [J]. IEEE access, 2020, 8: 223797–223805. DOI: 10.1109/ACCESS.2020.3043656
DOI |
74 |
YU F, YANG X X, ZHONG H T, et al. Polarization-insensitive wide-angle-reception metasurface with simplified structure for harvesting electromagnetic energy [J]. Applied physics letters, 2018, 113(12): 123903. DOI: 10.1063/1.5046927
DOI |
75 |
XU P, WANG S Y, W G Y. Design of an effective energy receiving adapter for microwave wireless power transmission application [J]. AIP advances, 2016, 6(10): 105010. DOI: 10.1063/1.4966050
DOI |
76 |
ZHANG X M, LIU H X, LI L. Electromagnetic power harvester using wide-angle and polarization-insensitive metasurfaces [J]. Applied sciences, 2018, 8(4): 497. DOI: 10.3390/app8040497
DOI |
77 |
SONG C M, TRINH-VAN S, YI S H, et al. Analysis of received power in RF wireless power transfer system with array antennas [J]. IEEE access, 2021, 9: 76315–76324. DOI: 10.1109/ACCESS.2021.3083270
DOI |
78 |
CHEN L, MA Q, JING H B, et al. Space-energy digital-coding metasurface based on an active amplifier [J]. Physical review applied, 2019, 11(5): 054051. DOI: 10.1103/physrevapplied.11.054051
DOI |
79 |
MA Q, CHEN L, JING H B, et al. Controllable and programmable nonreciprocity based on detachable digital coding metasurface [J]. Advanced optical materials, 2019, 7(24): 1901285. DOI: 10.1002/adom.201901285
DOI |
80 |
QIU T S, JIA Y X, WANG J F, et al. Controllable reflection-enhancement metasurfaces via amplification excitation of transistor circuit [J]. IEEE transactions on antennas and propagation, 2021, 69(3): 1477–1482. DOI: 10.1109/TAP.2020.3019351
DOI |
81 |
TANG W K, DAI J Y, CHEN M Z, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation [J]. IEEE journal on selected areas in communications, 2020, 38(11): 2683–2699. DOI: 10.1109/JSAC.2020.3007055
DOI |
82 |
HUANG C W, HU S, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: opportunities, challenges, and trends [J]. IEEE wireless communications, 2020, 27(5): 118–125. DOI: 10.1109/MWC.001.1900534
DOI |
83 |
SHLEZINGER N, DICKER O, ELDAR Y C, et al. Dynamic metasurface antennas for uplink massive MIMO systems [J]. IEEE transactions on communications, 2019, 67(10): 6829–6843. DOI: 10.1109/TCOMM.2019.2927213
DOI |
84 |
TIAN S C, ZHANG X M, WANG X, et al. Recent advances in metamaterials for simultaneous wireless information and power transmission [J]. Nanophotonics, 2022: 1–27. DOI: 10.1515/nanoph-2021-0657
DOI |
85 |
WANG X, HAN J Q, TIAN S C, et al. Amplification and manipulation of nonlinear electromagnetic waves and enhanced nonreciprocity using transmissive space-time-coding metasurface [J]. Advanced science, 2022, 9(11): 2105960. DOI: 10.1002/advs.202105960
DOI |
86 |
ZHANG P, ZHANG X M, LI L. An optically transparent metantenna for RF wireless energy harvesting [J]. IEEE transactions on antennas and propagation, 2022, 70(4): 2550–2560. DOI: 10.1109/TAP.2021.3137166
DOI |
87 |
LI L, ZHANG P, HAN J, et al. Key technologies of microwave wireless power transfer and energy harvesting based on electromagnetic metamaterials [J]. Acta photonica sinica, 2021, 50(10): 1016001. DOI: 10.3788/gzxb20215010.1016001
DOI |
[1] | LI Yuting, DING Yi, GAO Jiangchuan, LIU Yusha, HU Jie, YANG Kun. UAV Autonomous Navigation for Wireless Powered Data Collection with Onboard Deep Q-Network [J]. ZTE Communications, 2023, 21(2): 80-87. |
[2] | YANG Bo, MITANI Tomohiko, SHINOHARA Naoki, ZHANG Huaiqing. High-Power Simultaneous Wireless Information and Power Transfer: Injection-Locked Magnetron Technology [J]. ZTE Communications, 2022, 20(2): 3-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||