ZTE Communications ›› 2021, Vol. 19 ›› Issue (4): 90-97.DOI: 10.12142/ZTECOM.202104010
• Research Paper • Previous Articles Next Articles
HE Hongye(), YANG Zhiguo, CHEN Xiangning
Online:
2021-12-25
Published:
2022-01-04
About author:
HE Hongye (HE Hongye, YANG Zhiguo, CHEN Xiangning. Payload Encoding Representation from Transformer for Encrypted Traffic Classification[J]. ZTE Communications, 2021, 19(4): 90-97.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202104010
Parameter | Value | Description |
---|---|---|
hidden_size | 768 | Vector size of the encoding outputs (embedding vectors) |
num_hidden_layers | 12 | Number of encoders used in the encoding network |
num_attention_heads | 12 | Number of attention heads used in the multi-head attention mechanism |
intermediate_size | 3 072 | Size of the hidden vectors in FNN networks |
input_length | 128 | Amount of tokenized bigrams used in a single packet |
Table 1 Pre-training parameter settings
Parameter | Value | Description |
---|---|---|
hidden_size | 768 | Vector size of the encoding outputs (embedding vectors) |
num_hidden_layers | 12 | Number of encoders used in the encoding network |
num_attention_heads | 12 | Number of attention heads used in the multi-head attention mechanism |
intermediate_size | 3 072 | Size of the hidden vectors in FNN networks |
input_length | 128 | Amount of tokenized bigrams used in a single packet |
Parameter | Value | Description |
---|---|---|
packet_num | alternative (5 by default) | The number of the first packets in a selected flow |
softmax_hidden | 768 | Size of the hidden vectors in the softmax layer |
dropout | 0.5 | The dropout rate of the softmax layer |
Table 2 Classification parameter settings
Parameter | Value | Description |
---|---|---|
packet_num | alternative (5 by default) | The number of the first packets in a selected flow |
softmax_hidden | 768 | Size of the hidden vectors in the softmax layer |
dropout | 0.5 | The dropout rate of the softmax layer |
Model | Precision | Recall | F1 |
---|---|---|---|
ML-1[ | 0.819 4 | 0.813 6 | 0.816 4 |
ML-2 | 0.890 1 | 0.889 6 | 0.889 8 |
CNN-1D[ | 0.861 6 | 0.860 5 | 0.861 0 |
CNN-2D[ | 0.842 5 | 0.842 0 | 0.842 2 |
HAST-I[ | 0.875 7 | 0.872 9 | 0.874 2 |
HAST-II[ | 0.850 2 | 0.842 7 | 0.840 9 |
PERT | 0.932 7 | 0.932 2 | 0.932 3 |
Table 3 Classification results (ISCX data set)
Model | Precision | Recall | F1 |
---|---|---|---|
ML-1[ | 0.819 4 | 0.813 6 | 0.816 4 |
ML-2 | 0.890 1 | 0.889 6 | 0.889 8 |
CNN-1D[ | 0.861 6 | 0.860 5 | 0.861 0 |
CNN-2D[ | 0.842 5 | 0.842 0 | 0.842 2 |
HAST-I[ | 0.875 7 | 0.872 9 | 0.874 2 |
HAST-II[ | 0.850 2 | 0.842 7 | 0.840 9 |
PERT | 0.932 7 | 0.932 2 | 0.932 3 |
Model | Precision | Recall | F1 |
---|---|---|---|
ML-1[ | / | / | / |
ML-2 | 0.735 1 | 0.733 5 | 0.732 1 |
CNN-1D[ | 0.770 9 | 0.768 3 | 0.766 8 |
CNN-2D[ | 0.768 4 | 0.765 9 | 0.764 3 |
HAST-I[ | 0.820 1 | 0.818 5 | 0.816 7 |
HAST-II[ | 0.792 4 | 0.781 3 | 0.782 6 |
PERT | 0.904 2 | 0.900 3 | 0.900 7 |
Table 4 Classification results (Android data set)
Model | Precision | Recall | F1 |
---|---|---|---|
ML-1[ | / | / | / |
ML-2 | 0.735 1 | 0.733 5 | 0.732 1 |
CNN-1D[ | 0.770 9 | 0.768 3 | 0.766 8 |
CNN-2D[ | 0.768 4 | 0.765 9 | 0.764 3 |
HAST-I[ | 0.820 1 | 0.818 5 | 0.816 7 |
HAST-II[ | 0.792 4 | 0.781 3 | 0.782 6 |
PERT | 0.904 2 | 0.900 3 | 0.900 7 |
1 |
VELAN P, CERMAK M, CELEDA P, et al. A survey of methods for encrypted traffic classification and analysis [J]. International journal of network management, 2015, 25(5): 355–374. DOI: 10.1002/nem.1901
DOI |
2 |
REZAEI S, LIU X. Deep learning for encrypted traffic classification: an overview [J]. IEEE communications magazine, 2019, 57(5): 76–81. DOI: 10.1109/MCOM.2019.1800819
DOI |
3 |
DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis, USA: Association for Computational Linguistics, 2019: 4171–4186. DOI: 10.18653/v1/N19-1423
DOI |
4 |
JAVAID A, NIYAZ Q, SUN W Q, et al. A deep learning approach for network intrusion detection system [C]//Proceedings of the 9th EAI International Conference on Bio-Inspired Information and Communications Technologies. Brussels, Belgium: ICST, 2016: 21–26. DOI: 10.4108/eai.3-12-2015.2262516
DOI |
5 |
HOCHST J, BAUMGARTNER L, HOLLICK M, et al. Unsupervised traffic flow classification using a neural autoencoder [C]//42nd Conference on Local Computer Networks (LCN). Singapore, Singapore: IEEE, 2017: 523–526. DOI: 10.1109/LCN.2017.57
DOI |
6 | REZAEI S, LIU X. How to achieve high classification accuracy with just a few labels: a semi-supervised approach using sampled packets [EB/OL]. (2020-05-16)[2020-06-01]. |
7 |
WANG W, ZHU M, WANG J J, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks [C]//IEEE International Conference on Intelligence and Security Informatics (ISI). Beijing, China: IEEE, 2017: 43–48. DOI: 10.1109/ISI.2017.8004872
DOI |
8 |
LOTFOLLAHI M, SIAVOSHANI M J, ZADE R S H, et al. Deep packet: a novel approach for encrypted traffic classification using deep learning [J]. Soft computing, 2020, 24: 1999–2012. DOI: 10.1007/s00500-019-04030-2
DOI |
9 |
LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A, et al. Network traffic classifier with convolutional and recurrent neural networks for internet of things [J]. IEEE access, 2017, 5: 18042–18050. DOI: 10.1109/ACCESS.2017.2747560
DOI |
10 |
WANG W, SHENG Y Q, WANG J L, et al. HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection [J]. IEEE access, 2017, 6: 1792–1806. DOI: 10.1109/ACCESS.2017.2780250
DOI |
11 | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space [C]//International Conference on Learning Representation. Scottsdale, USA: ICLR, 2013 |
12 | PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations [EB/OL]. (2018-03-22)[2020-06-01]. |
13 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [EB/OL]. (2018-03-22)[2020-06-01]. |
14 | BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model [J]. The journal of machine learning research, 2000, 3: 1137–1155 |
15 | LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations [EB/OL]. (2020-02-09)[2020-06-01]. |
16 | DRAPER-GIL G, LASHKARI A H, MAMUN M S I, et al. Characterization of encrypted and VPN traffic using time-related features [C]//2nd International Conference on Information Systems Security and Privacy (ICISSP). Rome, Italy: INSTICC, 2016 |
[1] | WANG Chongchong, LI Yao, WANG Beibei, CAO Hong, ZHANG Yanyong. Point Cloud Processing Methods for 3D Point Cloud Detection Tasks [J]. ZTE Communications, 2023, 21(4): 38-46. |
[2] | GONG Panyin, ZHANG Guidong, ZHANG Zhigang, CHEN Xiao, DING Xuan. Research on Fall Detection System Based on Commercial Wi-Fi Devices [J]. ZTE Communications, 2023, 21(4): 60-68. |
[3] | DENG Letian, ZHAO Yanru. Deep Learning-Based Semantic Feature Extraction: A Literature Review and Future Directions [J]. ZTE Communications, 2023, 21(2): 11-17. |
[4] | LU Ping, SHENG Bin, SHI Wenzhe. Scene Visual Perception and AR Navigation Applications [J]. ZTE Communications, 2023, 21(1): 81-88. |
[5] | FAN Guotian, WANG Zhibin. Intelligent Antenna Attitude Parameters Measurement Based on Deep Learning SSD Model [J]. ZTE Communications, 2022, 20(S1): 36-43. |
[6] | GAO Zhengguang, LI Lun, WU Hao, TU Xuezhen, HAN Bingtao. A Unified Deep Learning Method for CSI Feedback in Massive MIMO Systems [J]. ZTE Communications, 2022, 20(4): 110-115. |
[7] | ZHANG Jintao, HE Zhenqing, RUI Hua, XU Xiaojing. Spectrum Sensing for OFDMA Using Multicarrier Covariance Matrix Aware CNN [J]. ZTE Communications, 2022, 20(3): 61-69. |
[8] | XUE Songyan, LI Ang, WANG Jinfei, YI Na, MA Yi, Rahim TAFAZOLLI, Terence DODGSON. To Learn or Not to Learn:Deep Learning Assisted Wireless Modem Design [J]. ZTE Communications, 2019, 17(4): 3-11. |
[9] | ZHENG Xiaoqing, LU Yaping, PENG Haoyuan, FENG Jiangtao, ZHOU Yi, JIANG Min, MA Li, ZHANG Ji, JI Jie. Detecting Abnormal Start-Ups, Unusual Resource Consumptions of the Smart Phone: A Deep Learning Approach [J]. ZTE Communications, 2019, 17(2): 38-43. |
[10] | ZHENG Xiaoqing, CHEN Jun, SHANG Guoqiang. Deep Neural Network-Based Chinese Semantic Role Labeling [J]. ZTE Communications, 2017, 15(S2): 58-64. |
[11] | Ping Lu, Zhenjiang Dong, Shengmei Luo, Lixia Liu, Shanshan Guan, Shengyu Liu, and Qingcai Chen. A Parallel Platform for Web Text Mining [J]. ZTE Communications, 2013, 11(3): 56-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||