1 |
ZHANG Z D, WANG R S, ZHANG Z, et al. Circuit reliability comparison between stochastic computing and binary computing [J]. IEEE transactions on circuits and systems II: express briefs, 2020, 67(12): 3342–3346. DOI: 10.1109/tcsii.2020.2993273
|
2 |
LI T M, ROMASZKAN W, PAMARTI S, et al. GEO: Generation and execution optimized stochastic computing accelerator for neural networks [C]//Proceedings of 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021: 689–694. DOI: 10.23919/date51398.2021.9473911
|
3 |
HU Y X, ZHANG Y W, WANG R S, et al. A 28-nm 198.9-TOPS/W fault-tolerant stochastic computing neural network processor [J]. IEEE solid-state circuits letters, 2022, 5: 198–201. DOI: 10.1109/lssc.2022.3194954
|
4 |
CHEN Z Y, MA Y F, WANG Z F. Hybrid stochastic-binary computing for low-latency and high-precision inference of CNNs [J]. IEEE transactions on circuits and systems I: regular papers, 2022, 69(7): 2707–2720. DOI: 10.1109/tcsi.2022.3166524
|
5 |
HU S, HAN K N, HU J H. High performance and hardware efficient stochastic computing elements for deep neural network [C]//Proceedings of 6th World Conference on Computing and Communication Technologies (WCCCT). IEEE, 2023: 181–186. DOI: 10.1109/wccct56755.2023.10052402
|
6 |
FRASSER C F, LINARES-SERRANO P, DE LOS RÍOS I D, et al. Fully parallel stochastic computing hardware implementation of convolutional neural networks for edge computing applications [J]. IEEE transactions on neural networks and learning systems, 2023, 34(12): 10408–10418. DOI: 10.1109/tnnls.2022.3166799
|
7 |
XIE Z P, YUAN C Y, LI L K, et al. Energy-efficient stochastic computing for convolutional neural networks by using kernel-wise parallelism [C]//Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2023: 1–5. DOI: 10.1109/iscas46773.2023.10181378
|
8 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 770–778. DOI: 10.1109/cvpr.2016.90
|
9 |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. DOI: 10.1109/5.726791
|
10 |
KRIZHEVSKY A. Learning multiple layers of features from tiny images [EB/OL]. (2012-05-20) [2024-08-01].
|
11 |
NISHI Y, DOERONG R. Handbook of semiconductor manufacturing technology [M]. Boca Raton, USA: CRC Press, 2008
|
12 |
CHEN Y H, YANG T J, EMER J S, et al. Eyeriss v2: a flexible accelerator for emerging deep neural networks on mobile devices [J]. IEEE journal on emerging and selected topics in circuits and systems, 2019, 9(2): 292–308. DOI: 10.1109/JETCAS.2019.2910232
|