ZTE Communications ›› 2024, Vol. 22 ›› Issue (3): 116-122.DOI: 10.12142/ZTECOM.202403014
• Research Papers • Previous Articles
WANG Chanfei(), CHAI Jianxin, XU Yamei
Received:
2024-08-04
Online:
2024-09-25
Published:
2024-09-29
About author:
WANG Chanfei (wangchanfei@163.com) received her MS degree in communication and information systems from Lanzhou University of Technology, China in 2008 and PhD degree from Beijing University of Posts and Telecommunications (BUPT), China in 2016. She is currently an associate professor and a master's degree supervisor with the College of Computer and Communication, Lanzhou University of Technology. Her research interest is signal detection in communication system.Supported by:
WANG Chanfei, CHAI Jianxin, XU Yamei. Differential Spatial Modulation Mapping Algorithms[J]. ZTE Communications, 2024, 22(3): 116-122.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202403014
Index t | 0 | 1 | 2 | 3 |
---|---|---|---|---|
Time interval | 0, 1, 2 | 3, 4, 5 | 6, 7, 8 | 9, 10, 11 |
Input bit | No information sent | 01010 | 10100 | 11110 |
Map to | No information sent | |||
Actual transmitted signal matrix |
Table 1 Differential transmission in differential spatial modulation (DSM) with binary phase shift keying (BPSK) modulation and NT = 3
Index t | 0 | 1 | 2 | 3 |
---|---|---|---|---|
Time interval | 0, 1, 2 | 3, 4, 5 | 6, 7, 8 | 9, 10, 11 |
Input bit | No information sent | 01010 | 10100 | 11110 |
Map to | No information sent | |||
Actual transmitted signal matrix |
Input Bitstream | Antenna Activation Sequence | Block of Information to Send |
---|---|---|
00 | (1, 2, 3) | |
01 | (1, 3, 2) | |
10 | (2, 1, 3) | |
11 | (2, 3, 1) |
Table 2 Mapping table of LUTO algorithm when NT = 3
Input Bitstream | Antenna Activation Sequence | Block of Information to Send |
---|---|---|
00 | (1, 2, 3) | |
01 | (1, 3, 2) | |
10 | (2, 1, 3) | |
11 | (2, 3, 1) |
Input Bits | Time Interval 1 | Time Interval 2 | Time Interval 3 | Transmitted Signal Matrix | |||
---|---|---|---|---|---|---|---|
Antenna Index | Symbol | Antenna Index | Symbol | Antenna Index | Symbol | ||
00000 | 1 | 2 | 3 | ||||
00001 | 1 | 2 | 3 | +1 | |||
00010 | 1 | 2 | +1 | 3 | |||
00011 | 1 | 2 | +1 | 3 | +1 | ||
00100 | 1 | +1 | 2 | +1 | 3 | +1 | |
00101 | 1 | +1 | 2 | +1 | 3 | ||
00110 | 1 | +1 | 2 | 3 | +1 | ||
00111 | 1 | +1 | 2 | 3 |
Table 3 Matrix of all signals sent with binary phase shift keying (BPSK) modulation and NT = 3 when input bit D is 00
Input Bits | Time Interval 1 | Time Interval 2 | Time Interval 3 | Transmitted Signal Matrix | |||
---|---|---|---|---|---|---|---|
Antenna Index | Symbol | Antenna Index | Symbol | Antenna Index | Symbol | ||
00000 | 1 | 2 | 3 | ||||
00001 | 1 | 2 | 3 | +1 | |||
00010 | 1 | 2 | +1 | 3 | |||
00011 | 1 | 2 | +1 | 3 | +1 | ||
00100 | 1 | +1 | 2 | +1 | 3 | +1 | |
00101 | 1 | +1 | 2 | +1 | 3 | ||
00110 | 1 | +1 | 2 | 3 | +1 | ||
00111 | 1 | +1 | 2 | 3 |
U | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
U0 | U1 | U2 | U3 | U6 | U7 | U13 | U14 | U15 | ||||
D | D0 | 00000000 | 00000001 | 00000010 | 00000011 | … | 00000110 | 00000111 | … | 00001101 | 00001110 | 00001111 |
D1 | 00010000 | 00010001 | 00010010 | 00010011 | … | 00010110 | 00010111 | … | 00011101 | 00011110 | 00011111 | |
D2 | 00100000 | 00100001 | 00100010 | 00100011 | … | 00100110 | 00100111 | … | 00101101 | 00101110 | 00101111 | |
… | … | … | … | … | … | … | … | … | … | … | … | |
D6 | 01100000 | 01100001 | 01100010 | 01100011 | … | 01100110 | 01100111 | … | 01101101 | 01101110 | 01101111 | |
D7 | 01110000 | 01110001 | 01110010 | 01110011 | … | 01110110 | 01110111 | … | 01111101 | 01111110 | 01111111 | |
… | … | … | … | … | … | … | … | … | … | … | … | |
D13 | 11000000 | 11000001 | 11000010 | 11000011 | … | 11000110 | 11000111 | … | 11001101 | 11001110 | 11001111 | |
D14 | 11010000 | 11010001 | 11010010 | 11010011 | … | 11010110 | 11010111 | … | 11011101 | 11011110 | 11011111 | |
D15 | 11110000 | 11110001 | 11110010 | 11110011 | … | 11110110 | 11110111 | … | 11111101 | 11111110 | 11111111 |
Table 4 All the signal schemes of Look-Up Table Order (LUTO) with binary phase shift keying (BPSK) modulation and NT = 4
U | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
U0 | U1 | U2 | U3 | U6 | U7 | U13 | U14 | U15 | ||||
D | D0 | 00000000 | 00000001 | 00000010 | 00000011 | … | 00000110 | 00000111 | … | 00001101 | 00001110 | 00001111 |
D1 | 00010000 | 00010001 | 00010010 | 00010011 | … | 00010110 | 00010111 | … | 00011101 | 00011110 | 00011111 | |
D2 | 00100000 | 00100001 | 00100010 | 00100011 | … | 00100110 | 00100111 | … | 00101101 | 00101110 | 00101111 | |
… | … | … | … | … | … | … | … | … | … | … | … | |
D6 | 01100000 | 01100001 | 01100010 | 01100011 | … | 01100110 | 01100111 | … | 01101101 | 01101110 | 01101111 | |
D7 | 01110000 | 01110001 | 01110010 | 01110011 | … | 01110110 | 01110111 | … | 01111101 | 01111110 | 01111111 | |
… | … | … | … | … | … | … | … | … | … | … | … | |
D13 | 11000000 | 11000001 | 11000010 | 11000011 | … | 11000110 | 11000111 | … | 11001101 | 11001110 | 11001111 | |
D14 | 11010000 | 11010001 | 11010010 | 11010011 | … | 11010110 | 11010111 | … | 11011101 | 11011110 | 11011111 | |
D15 | 11110000 | 11110001 | 11110010 | 11110011 | … | 11110110 | 11110111 | … | 11111101 | 11111110 | 11111111 |
U | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
U0 | U1 | U2 | U14 | U15 | U29 | U30 | U31 | ||||
D | D0 | 00000000000 | 00000000001 | 00000000010 | … | 00000001110 | 00000001111 | … | 00000011101 | 00000011110 | 00000011111 |
D1 | 00000100000 | 00000100001 | 00000100010 | … | 00000101110 | 00000101111 | … | 00000111101 | 00000111110 | 00000111111 | |
D2 | 00001000000 | 00001000001 | 00001000010 | … | 00001001110 | 00001001111 | … | 00001011101 | 00001011110 | 00001111111 | |
… | … | … | … | … | … | … | … | … | … | … | |
D14 | 00111000000 | 00111000001 | 00111000010 | … | 00111001110 | 00111001111 | … | 00111011101 | 00111011110 | 00111011111 | |
D15 | 00111100000 | 00111100001 | 00111100010 | … | 00111101110 | 00111101111 | … | 00111111101 | 00111111110 | 00111111111 | |
… | … | … | … | … | … | … | … | … | … | … | |
D30 | 01111000000 | 01111000001 | 01111000010 | … | 01111001110 | 01111001111 | … | 01111011101 | 01111011110 | 01111011111 | |
D31 | 01111100000 | 01111100001 | 01111100010 | … | 01111101110 | 01111101111 | … | 01111111101 | 01111111110 | 01111111111 | |
… | … | … | … | … | … | … | … | … | … | … | |
D61 | 11110100000 | 11110100001 | 11110100010 | … | 11110101110 | 11110101111 | … | 11110111101 | 11110111110 | 11110111111 | |
D62 | 11111000000 | 11111000001 | 11111000010 | … | 11111001110 | 11111001111 | … | 11111011101 | 11111011110 | 11111011111 | |
D63 | 11111100000 | 11111100001 | 11111100010 | … | 11111101110 | 11111101111 | … | 11111111101 | 11111111110 | 11111111111 |
Table 5 All the signal schemes of Look-Up Table Order (LUTO) with binary phase shift keying (BPSK) modulation and NT = 5
U | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
U0 | U1 | U2 | U14 | U15 | U29 | U30 | U31 | ||||
D | D0 | 00000000000 | 00000000001 | 00000000010 | … | 00000001110 | 00000001111 | … | 00000011101 | 00000011110 | 00000011111 |
D1 | 00000100000 | 00000100001 | 00000100010 | … | 00000101110 | 00000101111 | … | 00000111101 | 00000111110 | 00000111111 | |
D2 | 00001000000 | 00001000001 | 00001000010 | … | 00001001110 | 00001001111 | … | 00001011101 | 00001011110 | 00001111111 | |
… | … | … | … | … | … | … | … | … | … | … | |
D14 | 00111000000 | 00111000001 | 00111000010 | … | 00111001110 | 00111001111 | … | 00111011101 | 00111011110 | 00111011111 | |
D15 | 00111100000 | 00111100001 | 00111100010 | … | 00111101110 | 00111101111 | … | 00111111101 | 00111111110 | 00111111111 | |
… | … | … | … | … | … | … | … | … | … | … | |
D30 | 01111000000 | 01111000001 | 01111000010 | … | 01111001110 | 01111001111 | … | 01111011101 | 01111011110 | 01111011111 | |
D31 | 01111100000 | 01111100001 | 01111100010 | … | 01111101110 | 01111101111 | … | 01111111101 | 01111111110 | 01111111111 | |
… | … | … | … | … | … | … | … | … | … | … | |
D61 | 11110100000 | 11110100001 | 11110100010 | … | 11110101110 | 11110101111 | … | 11110111101 | 11110111110 | 11110111111 | |
D62 | 11111000000 | 11111000001 | 11111000010 | … | 11111001110 | 11111001111 | … | 11111011101 | 11111011110 | 11111011111 | |
D63 | 11111100000 | 11111100001 | 11111100010 | … | 11111101110 | 11111101111 | … | 11111111101 | 11111111110 | 11111111111 |
CPU Type | Core Count | Thread Count | Core Types | Performance-Core Frequency | RAM |
---|---|---|---|---|---|
Core i9-13900 | 24 | 32 | Alder Lake (12-th generation) | 2.00 GHz | 32 GB |
Table 6 Configuration of the test host
CPU Type | Core Count | Thread Count | Core Types | Performance-Core Frequency | RAM |
---|---|---|---|---|---|
Core i9-13900 | 24 | 32 | Alder Lake (12-th generation) | 2.00 GHz | 32 GB |
Test Items | Program Running Time/s | Test Items | Program Running Time/s |
---|---|---|---|
PM BPSK | 6.76 | LUTO BPSK | 4.47 |
PM BPSK | 112.95 | LUTO BPSK | 30.45 |
PM BPSK | 213.68 | LUTO BPSK | 67.37 |
PM QPSK | 15.01 | LUTO QPSK | 5.47 |
PM QPSK | 363.52 | LUTO QPSK | 46.82 |
PM QPSK | 816.58 | LUTO QPSK | 89.67 |
PM 8PSK | 44.54 | LUTO 8PSK | 11.59 |
PM 8PSK | 370.16 | LUTO 8PSK | 41.83 |
PM 8PSK | 1 969.85 | LUTO 8PSK | 375.57 |
PM BPSK | 24.26 | LUTO BPSK | 20.51 |
PM BPSK | 472.79 | LUTO BPSK | 249.37 |
PM BPSK | 962.76 | LUTO BPSK | 334.52 |
PM BPSK | 1 145.05 | LUTO BPSK | 481.76 |
PM QPSK | 249.45 | LUTO QPSK | 173.50 |
PM 8PSK | 1 323.63 | LUTO 8PSK | 625.83 |
PM BPSK | 127.07 | LUTO BPSK | 96.36 |
PM QPSK | 1 981.00 | LUTO QPSK | 896.64 |
PM 8PSK | 56 551.78 | LUTO 8PSK | 15 637.95 |
Table 7 Performance test results
Test Items | Program Running Time/s | Test Items | Program Running Time/s |
---|---|---|---|
PM BPSK | 6.76 | LUTO BPSK | 4.47 |
PM BPSK | 112.95 | LUTO BPSK | 30.45 |
PM BPSK | 213.68 | LUTO BPSK | 67.37 |
PM QPSK | 15.01 | LUTO QPSK | 5.47 |
PM QPSK | 363.52 | LUTO QPSK | 46.82 |
PM QPSK | 816.58 | LUTO QPSK | 89.67 |
PM 8PSK | 44.54 | LUTO 8PSK | 11.59 |
PM 8PSK | 370.16 | LUTO 8PSK | 41.83 |
PM 8PSK | 1 969.85 | LUTO 8PSK | 375.57 |
PM BPSK | 24.26 | LUTO BPSK | 20.51 |
PM BPSK | 472.79 | LUTO BPSK | 249.37 |
PM BPSK | 962.76 | LUTO BPSK | 334.52 |
PM BPSK | 1 145.05 | LUTO BPSK | 481.76 |
PM QPSK | 249.45 | LUTO QPSK | 173.50 |
PM 8PSK | 1 323.63 | LUTO 8PSK | 625.83 |
PM BPSK | 127.07 | LUTO BPSK | 96.36 |
PM QPSK | 1 981.00 | LUTO QPSK | 896.64 |
PM 8PSK | 56 551.78 | LUTO 8PSK | 15 637.95 |
1 | DI RENZO M, HAAS H, GRANT P M. Spatial modulation for multiple-antenna wireless systems: A survey [J]. IEEE communications magazine, 2011, 49(12): 182–191. DOI: 10.1109/MCOM.2011.6094024 |
2 | MESLEH R Y, HAAS H, SINANOVIC S, et al. Spatial modulation [J]. IEEE transactions on vehicular technology, 2008, 57(4): 2228–2241. DOI: 10.1109/TVT.2007.912136 |
3 | WEN M W, ZHENG B X, KIM K J, et al. A survey on spatial modulation in emerging wireless systems: Research progresses and applications [J]. IEEE journal on selected areas in communications, 2019, 37(9): 1949–1972. DOI: 10.1109/JSAC.2019.2929453 |
4 | LI J, DANG S P, WEN M W, et al. Index modulation multiple access for 6G communications: Principles, applications, and challenges [J]. IEEE network, 2023, 37(1): 52–60. DOI: 10.1109/MNET.002.2200433 |
5 | LI J, DANG S P, YAN Y E, et al. Generalized quadrature spatial modulation and its application to vehicular networks with NOMA [J]. IEEE transactions on intelligent transportation systems, 2021, 22(7): 4030–4039. DOI: 10.1109/TITS.2020.3006482 |
6 | LI J, DANG S P, HUANG Y, et al. Composite multiple-mode orthogonal frequency division multiplexing with index modulation [J]. IEEE transactions on wireless communications, 2023, 22(6): 3748–3761. DOI: 10.1109/TWC.2022.3220752 |
7 | WEN M W, LI J, DANG S P, et al. Joint-mapping orthogonal frequency division multiplexing with subcarrier number modulation [J]. IEEE transactions on communications, 2021, 69(7): 4306–4318. DOI: 10.1109/TCOMM.2021.3066584 |
8 | WEN M W, LIN S E, KIM K J, et al. Cyclic delay diversity with index modulation for green Internet of Things [J]. IEEE transactions on green communications and networking, 2021, 5(2): 600–610. DOI: 10.1109/TGCN.2021.3067705 |
9 | WEN M W, CHEN X, LI Q, et al. Index modulation aided subcarrier mapping for dual-hop OFDM relaying [J]. IEEE transactions on communications, 2019, 67(9): 6012–6024. DOI: 10.1109/TCOMM.2019.2920642 |
10 | JEGANATHAN J, GHRAYEB A, SZCZECINSKI L. Spatial modulation: optimal detection and performance analysis [J]. IEEE communications letters, 2008, 12(8): 545–547. DOI: 10.1109/LCOMM.2008.080739 |
11 | BIAN Y Y, WEN M W, CHENG X, et al. A differential scheme for Spatial Modulation [C]//Proc. IEEE Global Communications Conference (GLOBECOM). IEEE, 2013: 3925–3930. DOI: 10.1109/GLOCOM.2013.6831686 |
12 | ISHIKAWA N, SUGIURA S. Unified differential spatial modulation [J]. IEEE wireless communications letters, 2014, 3(4): 337–340. DOI: 10.1109/LWC.2014.2315635 |
13 | BIAN Y Y, CHENG X, WEN M W, et al. Differential spatial modulation [J]. IEEE transactions on vehicular technology, 2015, 64(7): 3262–3268. DOI: 10.1109/TVT.2014.2348791 |
14 | LI J, WEN M W, CHENG X, et al. Differential spatial modulation with gray coded antenna activation order [J]. IEEE communications letters, 2016, 20(6): 1100–1103. DOI: 10.1109/LCOMM.2016.2557801 |
15 | ZHANG M, WEN M W, CHENG X, et al. A dual-hop virtual MIMO architecture based on hybrid differential spatial modulation [J]. IEEE transactions on wireless communications, 2016, 15(9): 6356–6370. DOI: 10.1109/TWC.2016.2583423 |
16 | RAJASHEKAR R, XU C, ISHIKAWA N, et al. Algebraic differential spatial modulation is capable of approaching the performance of its coherent counterpart [J]. IEEE transactions on communications, 2017, 65(10): 4260–4273. DOI: 10.1109/TCOMM.2017.2720170 |
17 | XU C, WANG L, NG S X, et al. Soft-decision multiple-symbol differential sphere detection and decision-feedback differential detection for differential QAM dispensing with channel estimation in the face of rapidly fading channels [J]. IEEE transactions on wireless communications, 2016, 15(6): 4408–4425. DOI: 10.1109/TWC.2016.2541665 |
18 | WEI R Y, TSAI Y W, CHEN S L. Improved schemes of differential spatial modulation [J]. IEEE access, 2021, 9: 97120–97128. DOI: 10.1109/ACCESS.2021.3095531 |
19 | WEN M W, CHENG X, BIAN Y Y, et al. A low-complexity near-ML differential spatial modulation detector [J]. IEEE signal processing letters, 2015, 22(11): 1834–1838. DOI: 10.1109/LSP.2015.2425042 |
20 | WEI R Y, CHEN S L, LIN Y H, et al. Bandwidth-efficient generalized differential spatial modulation [J]. IEEE transactions on vehicular technology, 2023, 72(1): 601–610. DOI: 10.1109/TVT.2022.3202912 |
21 | XIU H T, YU D Z, GAO P Y, et al. An enhanced system model for differential spatial modulation system under fast fading channels and a corresponding DFDD based low- complexity detector [J]. IEEE transactions on vehicular technology, 2024, 73(2): 2227–2235. DOI: 10.1109/TVT.2023.3316275 |
22 | YANG L, XIU H T, YU D Z, et al. Reordered amplitude phase shift keying aided differential spatial modulation: DFDD-based low-complexity detector and performance analysis over fading channels [J]. IEEE transactions on wireless communications, 2022, 21(10): 7913–7925. DOI: 10.1109/TWC.2022.3162834 |
23 | WEI R Y. Differential encoding by a look-up table for quadrature-amplitude modulation [J]. IEEE transactions on communications, 2011, 59(1): 84–94. DOI: 10.1109/TCOMM.2010.102910.100061 |
[1] | Sohail Taheri, Mir Ghoraishi, XIAO Pei, CAO Aijun, GAO Yonghong. Evaluation of Preamble Based Channel Estimation for MIMO-FBMC Systems [J]. ZTE Communications, 2016, 14(4): 3-10. |
[2] | WEI Zhiqiang, YUAN Jinhong, Derrick Wing Kwan Ng, Maged Elkashlan, DING Zhiguo. A Survey of Downlink Non-Orthogonal Multiple Access for 5G Wireless Communication Networks [J]. ZTE Communications, 2016, 14(4): 17-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||