1 |
JOSEPH D, MISOCZKI R, MANZANO M, et al. Transitioning organizations to post-quantum cryptography [J]. Nature, 2022, 605(7909): 237–243. DOI: 10.1038/s41586-022-04623-2
|
2 |
DASTRES R, SOORI M. Secure socket layer (SSL) in the network and web security [J]. International journal of computer and information engineering, 2020, 14(10): 330–333
|
3 |
DUDDU S, RISHITA SAI A, SOWJANYA C L S, et al. Secure socket layer stripping attack using address resolution protocol spoofing [C]//Proc. 4th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 2020: 973–978. DOI: 10.1109/ICICCS48265.2020.9120993
|
4 |
IBRAHIM A. Secure socket layer: fundamentals and certificate verification [EB/OL]. [2023-08-20].
|
5 |
AHMAD KHAN N, KHAN A S, KAR H A, et al. Employing public key infrastructure to encapsulate messages during transport layer security handshake procedure [C]//Proc. Applied Informatics International Conference (AiIC). IEEE, 2022: 126–130. DOI: 10.1109/AiIC54368.2022.9914605
|
6 |
SHAKYA S. An efficient security framework for data migration in a cloud computing environment [J]. Journal of artificial intelligence and capsule networks, 2019, 1(1): 45–53. DOI: 10.36548/jaicn.2019.1.006
|
7 |
ZENG P, ZHOU H Y, WU W J, et al. Mode-pairing quantum key distribution [J]. Nature communications, 2022, 13(1): 3903. DOI: 10.1038/s41467-022-31534-7
|
8 |
XU F H, MA X F, ZHANG Q, et al. Secure quantum key distribution with realistic devices [J]. Reviews of modern physics, 2020, 92(2): 025002. DOI: 10.1103/RevModPhys.92.025002
|
9 |
MEHIC M, NIEMIEC M, RASS S, et al. Quantum key distribution [J]. ACM computing surveys, 2021, 53(5): 1–41. DOI: 10.1145/3402192
|
10 |
MA W K, CHEN B W, LIU L, et al. Equilibrium allocation approaches of quantum key resources with security levels in QKD-enabled optical data center networks [J]. IEEE Internet of Things journal, 2022, 9(24): 25660–25672. DOI: 10.1109/JIOT.2022.3195104
|
11 |
EMURA K, MORIAI S, NAKAJIMA T, et al. Cache-22: a highly deployable end-to-end encrypted cache system with post-quantum security [EB/OL]. [2023-08-20].
|
12 |
ALAGIC G, ALPERIN-SHERIFF J, APON D, et al. Status report on the first round of the NIST post-quantum cryptography standardization process [EB/OL]. [2023-08-20].
|
13 |
ASIF R. Post-quantum cryptosystems for Internet-of-Things: a survey on lattice-based algorithms [J]. IoT, 2021, 2(1): 71–91. DOI: 10.3390/iot2010005
|
14 |
DANG V B, MOHAJERANI K, GAJ K. High-speed hardware architectures and FPGA benchmarking of CRYSTALS-kyber, NTRU, and saber [J]. IEEE transactions on computers, 2023, 72(2): 306–320. DOI: 10.1109/TC.2022.3222954
|
15 |
HUANG Y M, HUANG M Q, LEI Z K, et al. A pure hardware implementation of CRYSTALS-KYBER PQC algorithm through resource reuse [J]. IEICE electronics express, 2020, 17(17): 20200234. DOI: 10.1587/elex.17.20200234
|
16 |
JATI A, GUPTA N, CHATTOPADHYAY A, et al. A configurable CRYSTALS-kyber hardware implementation with side-channel protection [J]. ACM transactions on embedded computing systems, 2024, 23(2): 1–25. DOI: 10.1145/3587037
|
17 |
WALDEN J. OpenSSL 3.0.0: an exploratory case study [C]//Proc. 19th International Conference on Mining Software Repositories. ACM, 2022: 735–737. DOI: 10.1145/3524842.3528035
|
18 |
AHN J, KWON H Y, AHN B, et al. Toward quantum secured distributed energy resources: adoption of post-quantum cryptography (PQC) and quantum key distribution (QKD) [J]. Energies, 2022, 15(3): 714. DOI: 10.3390/en15030714
|
19 |
YANG Y H, LI P Y, MA S Z, et al. All optical metropolitan quantum key distribution network with post-quantum cryptography authentication [J]. Optics express, 2021, 29(16): 25859–25867. DOI: 10.1364/OE.432944
|
20 |
WANG L J, ZHANG K Y, WANG J Y, et al. Experimental authentication of quantum key distribution with post-quantum cryptography [J]. NPJ quantum information, 2021, 7(1): 67. DOI: 10.1038/s41534-021-00400-7
|