ZTE Communications ›› 2023, Vol. 21 ›› Issue (3): 45-53.DOI: 10.12142/ZTECOM.202303007
• Research Papers • Previous Articles Next Articles
XIE Xinyu1, WU Yongpeng1(), YUAN Zhifeng2,3, MA Yihua2,3
Received:
2022-05-22
Online:
2023-09-21
Published:
2023-03-22
About author:
XIE Xinyu received his BS degree in telecommunication engineering from Xidian University, China in 2019. He is currently working toward a PhD degree in electronic engineering at Shanghai Jiao Tong University, China. His research interests include massive random access and compressed sensing.|WU Yongpeng (Supported by:
XIE Xinyu, WU Yongpeng, YUAN Zhifeng, MA Yihua. Massive Unsourced Random Access Under Carrier Frequency Offset[J]. ZTE Communications, 2023, 21(3): 45-53.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202303007
1 |
DAWY Z, SAAD W, GHOSH A, et al. Toward massive machine type cellular communications [J]. IEEE wireless communications, 2017, 24(1): 120–128. DOI: 10.1109/MWC.2016.1500284WC
DOI URL |
2 |
WU Y P, GAO X Q, ZHOU S D, et al. Massive access for future wireless communication systems [J]. IEEE wireless communications, 2020, 27(4): 148–156. DOI: 10.1109/MWC.001.1900494
DOI URL |
3 |
SENEL K, LARSSON E G. Grant-free massive MTC-enabled massive MIMO: a compressive sensing approach [J]. IEEE transactions on communications, 2018, 66(12): 6164–6175. DOI: 10.1109/TCOMM.2018.2866559
DOI URL |
4 |
LIU L, YU W. Massive connectivity with massive MIMO—part I: device activity detection and channel estimation [J]. IEEE transactions on signal processing, 2018, 66(11): 2933–2946. DOI: 10.1109/TSP.2018.2818082
DOI URL |
5 |
KE M L, GAO Z, WU Y P, et al. Compressive sensing-based adaptive active user detection and channel estimation: massive access meets massive MIMO [J]. IEEE transactions on signal processing, 2020, 68: 764–779. DOI: 10.1109/TSP.2020.2967175
DOI URL |
6 |
KE M L, GAO Z, WU Y P, et al. Massive access in cell-free massive MIMO-based Internet of Things: Cloud computing and edge computing paradigms [J]. IEEE journal on selected areas in communications, 2021, 39(3): 756–772. DOI: 10.1109/JSAC.2020.3018807
DOI URL |
7 |
WEI F, CHEN W, WU Y P, et al. Message-passing receiver design for joint channel estimation and data decoding in uplink grant-free SCMA systems [J]. IEEE transactions on wireless communications, 2018, 18(1): 167–181. DOI: 10.1109/TWC.2018.2878571
DOI URL |
8 |
POLYANSKIY Y. A perspective on massive random-access [C]//International Symposium on Information Theory (ISIT). IEEE, 2017: 2523–2527. DOI: 10.1109/ISIT.2017.8006984
DOI URL |
9 |
AMALLADINNE V K, CHAMBERLAND J F, NARAYANAN K R. A coded compressed sensing scheme for unsourced multiple access [J]. IEEE transactions on information theory, 2020, 66(10): 6509–6533. DOI: 10.1109/TIT.2020.3012948
DOI URL |
10 |
FENGLER A, HAGHIGHATSHOAR S, JUNG P, et al. Non-Bayesian activity detection, large-scale fading coefficient estimation, and unsourced random access with a massive MIMO receiver [J]. IEEE transactions on information theory, 2021, 67(5): 2925–2951. DOI: 10.1109/TIT.2021.3065291
DOI URL |
11 |
XIE X Y, WU Y P, GAO J Y, et al. Massive unsourced random access for massive MIMO correlated channels [C]//IEEE Global Communications Conference. IEEE, 2021: 1–6. DOI: 10.1109/GLOBECOM42002.2020.9347959
DOI URL |
12 |
SHYIANOV V, BELLILI F, MEZGHANI A, et al. Massive unsourced random access based on uncoupled compressive sensing: another blessing of massive MIMO [J]. IEEE journal on selected areas in communications, 2021, 39(3): 820–834. DOI: 10.1109/JSAC.2020.3019722
DOI URL |
13 |
XIE X Y, WU Y P. Unsourced random access with a massive MIMO receiver: Exploiting angular domain sparsity [C]//IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2021: 741–745. DOI: 10.1109/ICCC52777.2021.9580441
DOI URL |
14 |
XIE X Y, WU Y P, AN J P, et al. Massive unsourced random access: exploiting angular domain sparsity [J]. IEEE transactions on communications, 2022, 70(4): 2480–2498. DOI: 10.1109/TCOMM.2022.3153957
DOI URL |
15 |
LI Y, XIA M H, WU Y C. Activity detection for massive connectivity under frequency offsets via first-order algorithms [J]. IEEE transactions on wireless communications, 2019, 18(3): 1988–2002. DOI: 10.1109/TWC.2019.2901482
DOI URL |
16 |
SUN G L, LI Y N, YI X P, et al. Massive grant-free OFDMA with timing and frequency offsets [J]. IEEE transactions on wireless communications, 2022, 21(5): 3365–3380. DOI: 10.1109/TWC.2021.3121066
DOI URL |
17 |
BELLILI F, SOHRABI F, YU W. Generalized approximate message passing for massive MIMO mmWave channel estimation with Laplacian prior [J]. IEEE transactions on communications, 2019, 67(5): 3205–3219. DOI: 10.1109/TCOMM.2019.2892719
DOI URL |
18 |
FENGLER A, JUNG P, CAIRE G. SPARCs for unsourced random access [J]. IEEE transactions on information theory, 2021, 67(10): 6894–6915. DOI: 10.1109/TIT.2021.3081189
DOI URL |
19 |
DENG W, SIRIBURANON T, MUSA A, et al. A sub-harmonic injection-locked quadrature frequency synthesizer with frequency calibration scheme for millimeter-wave TDD transceivers [J]. IEEE journal of solid-state circuits, 2013, 48(7): 1710–1720. DOI: 10.1109/JSSC.2013.2253396
DOI URL |
20 |
MYERS N J, HEATH R W. Message passing-based joint CFO and channel estimation in mmWave systems with one-bit ADCs [J]. IEEE transactions on wireless communications, 2019, 18(6): 3064–3077. DOI: 10.1109/TWC.2019.2909865
DOI URL |
21 |
CHEN L, LIU A, YUAN X J. Structured turbo compressed sensing for massive MIMO channel estimation using a Markov prior [J]. IEEE transactions on vehicular technology, 2018, 67(5): 4635–4639. DOI: 10.1109/TVT.2017.2787708
DOI URL |
22 |
PARKER J T, SCHNITER P. Parametric bilinear generalized approximate message passing [J]. IEEE journal of selected topics in signal processing, 2016, 10(4): 795–808. DOI: 10.1109/JSTSP.2016.2539123
DOI URL |
23 |
KUHN H W. The Hungarian method for the assignment problem [J]. Naval research logistics, 2005, 52(1): 7–21. DOI: 10.1002/nav.20053
DOI URL |
[1] | WANG Jilin, ZENG Xianlong, YANG Yonghui, PENG Lin, LI Lingxiang. Tensor Decomposition-Based Channel Estimation and Sensing for Millimeter Wave MIMO-OFDM V2I Systems [J]. ZTE Communications, 2024, 22(3): 56-68. |
[2] | GUAN Xinrong, WU Qingqing. IRS‑Enabled Spectrum Sharing: Interference Modeling, Channel Estimation and Robust Passive Beamforming [J]. ZTE Communications, 2022, 20(1): 28-35. |
[3] | SHAO Zhichao, YAN Wenjing, YUAN Xiaojun. Markovian Cascaded Channel Estimation for RIS Aided Massive MIMO Using 1‑Bit ADCs and Oversampling [J]. ZTE Communications, 2022, 20(1): 48-56. |
[4] | JIAN Mengnan, ZHANG Nan, CHEN Yijian. RIS: Spatial‑Wideband Effect Analysis and Off‑Grid Channel Estimation [J]. ZTE Communications, 2022, 20(1): 57-62. |
[5] | NAIKOTI Ashwitha, CHOCKALINGAM Ananthanarayanan. Signal Detection and Channel Estimation in OTFS [J]. ZTE Communications, 2021, 19(4): 16-33. |
[6] | Julian AHRENS, Lia AHRENS, Hans D. SCHOTTEN. A Machine Learning Method for Prediction of Multipath Channels [J]. ZTE Communications, 2019, 17(4): 12-18. |
[7] | Stefano Buzzi, Carmen D’Andrea. Massive MIMO 5G Cellular Networks: mm-Wave vs. μ-Wave Frequencies [J]. ZTE Communications, 2017, 15(S1): 41-49. |
[8] | ZHANG Jianhua, WANG Chao, WU Zhongyuan, ZHANG Weite. A Survey of Massive MIMO Channel Measurements and Models [J]. ZTE Communications, 2017, 15(1): 14-22. |
[9] | ZHANG Ping, CHEN Jianqiao, TANG Tian. An Overview of Non-Stationary Property for Massive MIMO Channel Modeling [J]. ZTE Communications, 2017, 15(1): 3-7. |
[10] | Sohail Taheri, Mir Ghoraishi, XIAO Pei, CAO Aijun, GAO Yonghong. Evaluation of Preamble Based Channel Estimation for MIMO-FBMC Systems [J]. ZTE Communications, 2016, 14(4): 3-10. |
[11] | Yifei Yuan, Xiaowu Zhao. 5G: Vision, Scenarios and Enabling Technologies [J]. ZTE Communications, 2015, 13(1): 3-10. |
[12] | Fa-Long Luo. Signal Processing Techniques for 5G: An Overview [J]. ZTE Communications, 2015, 13(1): 20-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||