ZTE Communications ›› 2023, Vol. 21 ›› Issue (2): 34-39.DOI: 10.12142/ZTECOM.202302006
• Special Topic • Previous Articles Next Articles
CHEN Jiajun1,2(), GAO Yin1,2, LIU Zhuang2, LI Dapeng1,2
Received:
2023-02-01
Online:
2023-06-13
Published:
2023-06-13
About author:
Chen Jiajun (CHEN Jiajun, GAO Yin, LIU Zhuang, LI Dapeng. Future Vision on Artificial Intelligence Assisted Green Energy Efficiency Network[J]. ZTE Communications, 2023, 21(2): 34-39.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202302006
Time | Range | Type | Energy Saving Strategy |
---|---|---|---|
T0 | 2022-06-09 ~ 2022-06-15 | None | W/O channel shutdown W/O symbol shutdown W/O deep sleep |
T1 | 2022-05-27 ~ 2022-06-22 | Tradition | Channel shutdown Symbol shutdown Deep sleep |
T2 | 2022-06-25 ~ 2022-07-01 | AI/ML assisted | AI/ML channel shutdown AI/ML symbol shutdown Deep sleep |
Table 1 Configuration information of evaluation
Time | Range | Type | Energy Saving Strategy |
---|---|---|---|
T0 | 2022-06-09 ~ 2022-06-15 | None | W/O channel shutdown W/O symbol shutdown W/O deep sleep |
T1 | 2022-05-27 ~ 2022-06-22 | Tradition | Channel shutdown Symbol shutdown Deep sleep |
T2 | 2022-06-25 ~ 2022-07-01 | AI/ML assisted | AI/ML channel shutdown AI/ML symbol shutdown Deep sleep |
Phase | Deep Sleep/h | Channel Shutdown/h | Symbol Shutdown/h | Power Consumption/W | Improvement (Compared with T0) | Improvement (Compared with T1) |
---|---|---|---|---|---|---|
T0-W/O ES | 0 | 0 | 0 | 593.97 | - | - |
T1-Traditional ES | 2.61 | 0.58 | 9.63 | 466.92 | 21.39% | 2.48% |
T2-AI/ML ES | 3.48 | 5.94 | 9.03 | 452.18 | 23.87% | - |
Table 2 Time statistics of the duration of shutdown
Phase | Deep Sleep/h | Channel Shutdown/h | Symbol Shutdown/h | Power Consumption/W | Improvement (Compared with T0) | Improvement (Compared with T1) |
---|---|---|---|---|---|---|
T0-W/O ES | 0 | 0 | 0 | 593.97 | - | - |
T1-Traditional ES | 2.61 | 0.58 | 9.63 | 466.92 | 21.39% | 2.48% |
T2-AI/ML ES | 3.48 | 5.94 | 9.03 | 452.18 | 23.87% | - |
Phase | 5G Energy Efficiency /GB?(kW?h)-1 | Improvement (Compared with T0) |
---|---|---|
T0-W/O ES | 2.78 | - |
T1-Tranditional ES | 2.97 | 6.55% |
T2-AI/ML ES | 3.44 | 23.40% |
Table 3 Time statistics of the duration of energy efficiency
Phase | 5G Energy Efficiency /GB?(kW?h)-1 | Improvement (Compared with T0) |
---|---|---|
T0-W/O ES | 2.78 | - |
T1-Tranditional ES | 2.97 | 6.55% |
T2-AI/ML ES | 3.44 | 23.40% |
1 |
ELKAZZI R, KHALIL A. Energy-saving solution for future cellular systems [C]//The 4th International Conference on Renewable Energies for Developing Countries (REDEC). IEEE, 2019: 1–6. DOI: 10.1109/REDEC.2018.8597671
DOI |
2 | TONG E, WANG Y, DING F, et al. A practical eNB off/on based energy saving scheme for real LTE networks [C]//The 17th International Conference on Advanced Communication Technology (ICACT). IEEE, 2015: 12–17 |
3 |
HAN T, ANSARI N. On greening cellular networks via multicell cooperation [J]. IEEE wireless communications, 2013, 20(1): 82–89. DOI: 10.1109/MWC.2013.6472203
DOI |
4 | 3GPP. Eutran overall description: TS 36.300 [S]. 2019 |
5 | 3GPP. Study on ran-centric data collection and utilization for LTE and NR: TS 37.816 [S]. 2019 |
6 |
FU Y, WANG S, WANG C X, et al. Artificial intelligence to manage network traffic of 5G wireless networks [J]. IEEE network, 2018, 32(6): 58–64. DOI: 10.1109/MNET.2018.1800115
DOI |
7 |
LI R P, ZHAO Z F, ZHOU X, et al. Intelligent 5G: when cellular networks meet artificial intelligence [J]. IEEE wireless communications, 2017, 24(5): 175–183. DOI: 10.1109/MWC.2017.1600304WC
DOI |
8 | P’EREZ-ROMER J O, SALLENT O, FERR ́US R, et al. Knowledge-based 5G radio access network planning and optimization [C]//The International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2016: 359–365 |
9 |
GAO Y, CHEN J J, LIU Z, et al. Machine learning based energy saving scheme in wireless access networks [C]//Proceedings of 2020 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2020: 1573–1578. DOI: 10.1109/IWCMC48107.2020.9148536
DOI |
10 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84–90. DOI: 10.1145/3065386
DOI |
11 | 3GPP. Study on enhancement for data collection for NR and EN-DC: TR 37.817 [S]. 2022 |
[1] | GAO Yin, CHEN Jiajun, LI Dapeng. Intelligence Driven Wireless Networks in B5G and 6G Era: A Survey [J]. ZTE Communications, 2024, 22(3): 99-105. |
[2] | AWADA Uchechukwu, ZHANG Jiankang, CHEN Sheng, LI Shuangzhi, YANG Shouyi. Machine Learning Driven Latency Optimization for Internet of Things Applications in Edge Computing [J]. ZTE Communications, 2023, 21(2): 40-52. |
[3] | CAI Weibo, YANG Shulin, SUN Gang, ZHANG Qiming, YU Hongfang. Adaptive Load Balancing for Parameter Servers in Distributed Machine Learning over Heterogeneous Networks [J]. ZTE Communications, 2023, 21(1): 72-80. |
[4] | ZHAO Zipiao, ZHAO Yongli, YAN Boyuan, WANG Dajiang. Auxiliary Fault Location on Commercial Equipment Based on Supervised Machine Learning [J]. ZTE Communications, 2022, 20(S1): 7-15. |
[5] | NAN Yucen, FANG Minghao, ZOU Xiaojing, DOU Yutao, Albert Y. ZOMAYA. A Collaborative Medical Diagnosis System Without Sharing Patient Data [J]. ZTE Communications, 2022, 20(3): 3-16. |
[6] | LIU Zhuang, GAO Yin, LI Dapeng, CHEN Jiajun, HAN Jiren. Enabling Energy Efficiency in 5G Network [J]. ZTE Communications, 2021, 19(1): 20-29. |
[7] | Julian AHRENS, Lia AHRENS, Hans D. SCHOTTEN. A Machine Learning Method for Prediction of Multipath Channels [J]. ZTE Communications, 2019, 17(4): 12-18. |
[8] | LIU Jianwei, YUAN Yifei, HAN Jing. A Case Study on Intelligent Operation System for Wireless Networks [J]. ZTE Communications, 2019, 17(4): 19-26. |
[9] | HAN Bin, Hans D. SCHOTTEN. Machine Learning for Network Slicing Resource Management:A Comprehensive Survey [J]. ZTE Communications, 2019, 17(4): 27-32. |
[10] | XUE Songyan, LI Ang, WANG Jinfei, YI Na, MA Yi, Rahim TAFAZOLLI, Terence DODGSON. To Learn or Not to Learn:Deep Learning Assisted Wireless Modem Design [J]. ZTE Communications, 2019, 17(4): 3-11. |
[11] | Mohammed SEID, Stephen ANOKYE, SUN Guolin. Machine Learning Based Unmanned Aerial Vehicle Enabled Fog-Radio Aerial Vehicle Enabled Fog-Radio Access Network and Edge Computing [J]. ZTE Communications, 2019, 17(4): 33-45. |
[12] | Zöchmann Erich. A Framework for Active Learning of Beam Alignment in Vehicular Millimeter Wave Communications by Onboard Sensors [J]. ZTE Communications, 2019, 17(2): 2-9. |
[13] | ZHANG Shuang, ZHANG Ningbo, KANG Guixia. Energy Efficiency for NPUSCH in NB-IoT with Guard Band [J]. ZTE Communications, 2018, 16(4): 46-51. |
[14] | JIN Yichao, WEN Yonggang. When Machine Learning Meets Media Cloud: Architecture, Application and Outlook [J]. ZTE Communications, 2018, 16(3): 30-39. |
[15] | FENG Hong, LI Xi, ZHANG Heli, CHEN Shuying, JI Hong. Energy-Efficient Wireless Backhaul Algorithm in Ultra-Dense Networks [J]. ZTE Communications, 2018, 16(2): 16-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||