ZTE Communications ›› 2020, Vol. 18 ›› Issue (4): 78-83.DOI: 10.12142/ZTECOM.202004011
• Research Paper • Previous Articles Next Articles
SU Limin1, ZHANG Qiang2, LI Shuang1(), LIU Chi Harold1
Received:
2019-12-28
Online:
2020-12-25
Published:
2021-01-13
About author:
SU Limin is pursuing the M.Sc. degree in computer science at Beijing Institute of Technology, China. Her research interests include machine learning and transfer learning.|ZHANG Qiang received his B.S. degree in computer science from Hefei University of Technology, China in 1995. Working with ZTE Corporation, he was the director of the research team of TMN Standards from 2003 to 2006 and has been an NMS/OSS solution manager since 2007.|LI Shuang (SU Limin, ZHANG Qiang, LI Shuang, LIU Chi Harold. Balanced Discriminative Transfer Feature Learning for Visual Domain Adaptation[J]. ZTE Communications, 2020, 18(4): 78-83.
Dataset | Number of Samples | Number of Features | Number of Classes | Domain |
---|---|---|---|---|
Office-31 (DeCAF7) | 4 652 | 4 096 | 31 | A, W, D |
CMU-PIE | 11 554 | 1 024 | 68 | C05, C07, C09, C27, C29 |
Table 1 Cross-domain datasets used in the experiments
Dataset | Number of Samples | Number of Features | Number of Classes | Domain |
---|---|---|---|---|
Office-31 (DeCAF7) | 4 652 | 4 096 | 31 | A, W, D |
CMU-PIE | 11 554 | 1 024 | 68 | C05, C07, C09, C27, C29 |
Task/Method | 1NN | PCA | GFK | TCA | JDA | SA | DTSL | BDTFL |
---|---|---|---|---|---|---|---|---|
A→D | 59.6 | 60.6 | 52.0 | 56.2 | 56.8 | 61.0 | 60.0 | 62.65 |
A→W | 54.0 | 55.6 | 48.2 | 54.8 | 58.1 | 59.5 | 54.5 | 58.62 |
D→A | 42.4 | 44.6 | 41.8 | 44.3 | 44.8 | 46.9 | 46.6 | 54.56 |
D→W | 90.9 | 91.8 | 86.5 | 92.1 | 95.7 | 95.1 | 94.3 | 96.60 |
W→A | 40.8 | 42.0 | 38.6 | 42.1 | 46.2 | 46.6 | 45.6 | 51.79 |
W→D | 97.8 | 98.6 | 87.5 | 95.6 | 97.6 | 98.2 | 94.0 | 98.59 |
Average | 64.3 | 65.5 | 59.1 | 64.2 | 66.5 | 67.9 | 65.8 | 70.47 |
Table 2 Accuracy (%) on Office-31(Decaf7) Datasets
Task/Method | 1NN | PCA | GFK | TCA | JDA | SA | DTSL | BDTFL |
---|---|---|---|---|---|---|---|---|
A→D | 59.6 | 60.6 | 52.0 | 56.2 | 56.8 | 61.0 | 60.0 | 62.65 |
A→W | 54.0 | 55.6 | 48.2 | 54.8 | 58.1 | 59.5 | 54.5 | 58.62 |
D→A | 42.4 | 44.6 | 41.8 | 44.3 | 44.8 | 46.9 | 46.6 | 54.56 |
D→W | 90.9 | 91.8 | 86.5 | 92.1 | 95.7 | 95.1 | 94.3 | 96.60 |
W→A | 40.8 | 42.0 | 38.6 | 42.1 | 46.2 | 46.6 | 45.6 | 51.79 |
W→D | 97.8 | 98.6 | 87.5 | 95.6 | 97.6 | 98.2 | 94.0 | 98.59 |
Average | 64.3 | 65.5 | 59.1 | 64.2 | 66.5 | 67.9 | 65.8 | 70.47 |
Task/Method | 1NN | PCA | GFK | TCA | JDA | SA | DTSL | BDTFL |
---|---|---|---|---|---|---|---|---|
C05 →C07 | 26.1 | 24.8 | 26.2 | 40.8 | 58.6 | 26.8 | 65.9 | 67.3 |
C05 →C09 | 26.6 | 25.2 | 27.3 | 41.8 | 52.0 | 28.2 | 64.1 | 68.1 |
C05→C27 | 30.7 | 29.3 | 31.2 | 59.6 | 83.7 | 30.9 | 82.0 | 89.9 |
C05 →C29 | 16.7 | 16.3 | 17.6 | 29.4 | 47.7 | 19.6 | 54.9 | 58.6 |
C07→C05 | 24.5 | 24.2 | 25.2 | 41.8 | 60.6 | 26.4 | 45.0 | 59.8 |
C07→C09 | 46.6 | 45.5 | 47.4 | 51.5 | 60.2 | 48.0 | 53.5 | 62.7 |
C07→C27 | 54.1 | 53.4 | 54.3 | 64.7 | 75.4 | 54.3 | 71.4 | 80.4 |
C07 →C29 | 26.5 | 25.4 | 27.1 | 33.7 | 40.9 | 28.2 | 48.0 | 49.6 |
C09 →C05 | 21.4 | 21.0 | 21.8 | 34.7 | 50.9 | 23.2 | 52.5 | 57.7 |
C09→C07 | 41.0 | 40.5 | 43.2 | 47.7 | 56.1 | 44.3 | 55.6 | 61.1 |
C09 →C27 | 46.5 | 46.1 | 46.4 | 56.2 | 68.0 | 46.2 | 77.5 | 76.1 |
C09 →C29 | 26.2 | 25.3 | 26.7 | 33.2 | 40.3 | 28.9 | 54.1 | 53.2 |
C27→C05 | 33.0 | 32.0 | 34.2 | 55.6 | 81.0 | 36.3 | 81.5 | 86.8 |
C27 →C07 | 62.7 | 61.0 | 62.9 | 67.8 | 82.8 | 63.8 | 85.4 | 86.6 |
C27→C09 | 73.2 | 72.2 | 73.4 | 75.9 | 87.2 | 73.2 | 82.2 | 86.5 |
C27 →C29 | 37.2 | 35.1 | 37.4 | 40.3 | 49.9 | 38.1 | 72.6 | 72.8 |
C29→C05 | 18.5 | 18.9 | 20.4 | 27.0 | 47.5 | 23.4 | 52.2 | 59.1 |
C29 →C07 | 24.2 | 23.4 | 24.6 | 30.0 | 44.8 | 25.5 | 49.4 | 53.6 |
C29→C09 | 28.3 | 27.2 | 28.5 | 30.0 | 48.1 | 28.6 | 58.5 | 57.6 |
C29 →C27 | 31.2 | 30.3 | 31.3 | 33.6 | 56.5 | 31.2 | 64.3 | 66.0 |
Average | 34.8 | 33.9 | 35.4 | 44.8 | 59.6 | 36.3 | 63.5 | 67.7 |
Table 3 Accuracy (%) on CMU-PIE Datasets
Task/Method | 1NN | PCA | GFK | TCA | JDA | SA | DTSL | BDTFL |
---|---|---|---|---|---|---|---|---|
C05 →C07 | 26.1 | 24.8 | 26.2 | 40.8 | 58.6 | 26.8 | 65.9 | 67.3 |
C05 →C09 | 26.6 | 25.2 | 27.3 | 41.8 | 52.0 | 28.2 | 64.1 | 68.1 |
C05→C27 | 30.7 | 29.3 | 31.2 | 59.6 | 83.7 | 30.9 | 82.0 | 89.9 |
C05 →C29 | 16.7 | 16.3 | 17.6 | 29.4 | 47.7 | 19.6 | 54.9 | 58.6 |
C07→C05 | 24.5 | 24.2 | 25.2 | 41.8 | 60.6 | 26.4 | 45.0 | 59.8 |
C07→C09 | 46.6 | 45.5 | 47.4 | 51.5 | 60.2 | 48.0 | 53.5 | 62.7 |
C07→C27 | 54.1 | 53.4 | 54.3 | 64.7 | 75.4 | 54.3 | 71.4 | 80.4 |
C07 →C29 | 26.5 | 25.4 | 27.1 | 33.7 | 40.9 | 28.2 | 48.0 | 49.6 |
C09 →C05 | 21.4 | 21.0 | 21.8 | 34.7 | 50.9 | 23.2 | 52.5 | 57.7 |
C09→C07 | 41.0 | 40.5 | 43.2 | 47.7 | 56.1 | 44.3 | 55.6 | 61.1 |
C09 →C27 | 46.5 | 46.1 | 46.4 | 56.2 | 68.0 | 46.2 | 77.5 | 76.1 |
C09 →C29 | 26.2 | 25.3 | 26.7 | 33.2 | 40.3 | 28.9 | 54.1 | 53.2 |
C27→C05 | 33.0 | 32.0 | 34.2 | 55.6 | 81.0 | 36.3 | 81.5 | 86.8 |
C27 →C07 | 62.7 | 61.0 | 62.9 | 67.8 | 82.8 | 63.8 | 85.4 | 86.6 |
C27→C09 | 73.2 | 72.2 | 73.4 | 75.9 | 87.2 | 73.2 | 82.2 | 86.5 |
C27 →C29 | 37.2 | 35.1 | 37.4 | 40.3 | 49.9 | 38.1 | 72.6 | 72.8 |
C29→C05 | 18.5 | 18.9 | 20.4 | 27.0 | 47.5 | 23.4 | 52.2 | 59.1 |
C29 →C07 | 24.2 | 23.4 | 24.6 | 30.0 | 44.8 | 25.5 | 49.4 | 53.6 |
C29→C09 | 28.3 | 27.2 | 28.5 | 30.0 | 48.1 | 28.6 | 58.5 | 57.6 |
C29 →C27 | 31.2 | 30.3 | 31.3 | 33.6 | 56.5 | 31.2 | 64.3 | 66.0 |
Average | 34.8 | 33.9 | 35.4 | 44.8 | 59.6 | 36.3 | 63.5 | 67.7 |
1 |
PAN S J, YANG Q. A survey on transfer learning [J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345–1359. DOI: 10.1109/TKDE.2009.191
DOI |
2 | GONG B Q, GRAUMAN K, SHA F. Connecting the dots with landmarks: discriminatively learning domain⁃invariant features for unsupervised domain adaptation [C]//30th International Conference on International Conference on Machine Learning. Atlanta, USA: Curran Associates, 2013: 222–230 |
3 |
DUAN L X, TSANG I W, XU D. Domain transfer multiple kernel learning [J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 34(3): 465–479. DOI: 10.1109/TPAMI.2011.114
DOI |
4 | TAN B, ZHANG Y, PAN S J, et al. Distant domain transfer learning [C]//31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI Press, 2017: 2604–2610 |
5 | CHANG W⁃C, WU Y X, LIU H X, et al. Cross⁃domain kernel induction for transfer learning [C]//31st AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI Press, 2017: 1763–1769 |
6 |
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis [J]. IEEE transactions on neural networks, 2011, 22(2): 199–210. DOI: 10.1109/TNN.2010.2091281
DOI |
7 | GRETTON A, BORGWARDT K M, RASCH M, et al. A kernel method for the two⁃sample⁃problem [C]//19th International Conference on Neural Information Processing Systems. Kitakyushu, Japan: Springer, 2007: 513–520 |
8 |
LONG M S, WANG J M, DING G G, et al. Transfer feature learning with joint distribution adaptation [C]//IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 2200–2207. DOI: 10.1109/ICCV.2013.274
DOI |
9 |
LONG M S, WANG J M, DING G G, et al. Transfer joint matching for unsupervised domain adaptation [C]//IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014: 1410–1417. DOI: 10.1109/CVPR.2014.183
DOI |
10 |
BAKTASHMOTLAGH M, HARANDI M T, LOVELL B C, et al. Unsupervised domain adaptation by domain invariant projection [C]//IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 769–776. DOI: 10.1109/ICCV.2013.100
DOI |
11 |
LI S, SONG S J, HUANG G, et al. Domain invariant and class‑discriminative feature learning for visual domain adaptation [J]. IEEE transactions on image processing, 2018, 27(9): 4260–4273. DOI: 10.1109/TIP.2018.2839528
DOI |
12 | SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: A unified embedding for face recognition and clustering [EB/OL]. (2015⁃03⁃12)[2018⁃01⁃01]. |
13 | XIAO Q Q, LUO H, ZHANG C. Margin sample mining loss: a deep learning based method for person Re⁃identification [EB/OL]. (2017⁃10⁃02)[2018⁃01⁃01]. |
14 |
LI X Y, HERRANZ L, JIANG S Q. Multifaceted analysis of fine⁃tuning in a deep model for visual recognition [J]. IMS transactions on data science, 2020, 1(1): 1–22. DOI: 10.1145/3319500
DOI |
15 | SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains [C]//11th European Conference on Computer Vision. Heraklion, Greece: IEEE, 2010: 213–226 |
16 |
SIM T, BAKER S, BSAT M, pose The CMU, illumination, and expression (PIE) database [C]//Fifth IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA: IEEE, 2002. DOI: 10.1109/AFGR.2002.1004130
DOI |
17 |
FUKUNAGA K, NARENDRA P M. A branch and bound algorithm for computing k⁃nearest neighbors [J]. IEEE transactions on computers, 1975, C⁃24(7): 750–753. DOI: 10.1109/T-C.1975.224297
DOI |
18 |
JOLLIFFE I T. Principal component analysis [M]. New York, USA: Springer⁃Verlag, 2011: 1094–1096. DOI: 10.1007/b98835
DOI |
19 | GONG B, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation [C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2012: 2066–2073 |
20 |
FERNANDO B, HABRARD A, SEBBAN M, et al. Unsupervised visual domain adaptation using subspace alignment [C]//IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 2960–2967. DOI: 10.1109/ICCV.2013.368
DOI |
21 |
XU Y, FANG X Z, WU J, et al. Discriminative transfer subspace learning via low⁃rank and sparse representation [J]. IEEE transactions on image processing, 2016, 25(2): 850–863. DOI: 10.1109/TIP.2015.2510498
DOI |
[1] | HUANG Jian, LI Ya, TAO Jianhua, YI Jiangyan. Multimodal Emotion Recognition with Transfer Learning of Deep Neural Network [J]. ZTE Communications, 2017, 15(S2): 23-29. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 113
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||