[1] |
J. Tao and T. Tan , “Affective computing: A review,” in International Conference on Affective Computing and Intelligent Interaction, Beijing, China, Oct. 2005, pp. 981-995. doi: 10.1007/11573548_125.
|
[2] |
J. A. Russell, J. A. Bachorowski, J. M. Fernández-Dols , “Facial and vocal expressions of emotion,” Annual Review of Psychology, Nov. 2003, pp. 329-349. doi: 10.1146/annurev.psych.54.101601.145102.
|
[3] |
C. Busso, Z. Deng, S. Yildirim , et al., “Analysis of emotion recognition using facial expressions, speech and multimodal information,” in Proc. 6th International Conference on Multimodal Interfaces, State College, USA, Oct. 2004, pp. 205-211. doi: 10.1145/1027933.1027968.
|
[4] |
Y. Li, L. Chao, Y. Liu , et al., “From simulated speech to natural speech, what are the robust features for emotion recognition?” in IEEE International Conference on Affective Computing and Intelligent Interaction (ACII), Xi’an, China, Sept. 2015, pp. 368-373. doi: 10.1109/ACII.2015.7344597.
|
[5] |
F. Eyben, K. R. Scherer, B. W. Schuller , et al., “The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing,” IEEE Transactions on Affective Computing, Jan. 2015, pp. 190-202. doi: 10.1109/TAFFC.2015.2457417.
|
[6] |
B. Schuller, S. Steidl, A. Batliner , et al., “The INTERSPEECH 2014 computational paralinguistics challenge: cognitive & physical load,” in 15th Annual Conference of the International Speech Communication Association, Singapore, Singapore, Sept. 2014, pp. 427-431.
|
[7] |
F. Ringeval, B. Schuller, M. Valstar , et al., “Av+ ec 2015: the first affect recognition challenge bridging across audio, video, and physiological data,” in Proc. 5th International Workshop on Audio/Visual Emotion Challenge, Brisbane, Australia, Jan. 2015, pp. 3-8. doi: 10.1145/2808196.2811642.
|
[8] |
M. Valstar, J. Gratch, B. Schuller , et al., “AVEC 2016-depression, mood, and emotion recognition workshop and challenge,” in 6th International Workshop on Audio/Visual Emotion Challenge, Amsterdam, The Netherlands, Oct. 2016, pp. 1483-1484. doi: 10.1145/2988257.2988258.
|
[9] |
X. Xia, L. Guo, D. Jiang , et al., “Audio visual recognition of spontaneous emotions in-the-wild,” in Chinese Conference on Pattern Recognition, Chengdu, China, Nov. 2016, pp. 692-706. doi: 10.1007/978-981-10-3005-5_57.
|
[10] |
J. Wu, Z. Lin, H. Zha , “Multiple models fusion for emotion recognition in the wild,” in Proc. 2015 ACM on International Conference on Multimodal Interaction, Seattle, USA, Nov. 2015, pp. 475-481. doi: 10.1145/2818346.2830582.
|
[11] |
B. Sun, L. Li, G. Zhou , et al, “Combining multimodal features within a fusion network for emotion recognition in the wild,” in Proc. 2015 ACM on International Conference on Multimodal Interaction, Seattle, USA, Nov. 2015, pp. 497-502. doi: 10.1145/2818346.2830586.
|
[12] |
K. Han, D. Yu, I. Tashev , et al., “Speech emotion recognition using deep neural network and extreme learning machine,” in 14th Annual Conference of the International Speech Communication Association, Malaysia, Singapore, Sept. 2014, pp. 223-227.
|
[13] |
Q. Mao, M. Dong, Z. Huang , et al., “Learning salient features for speech emotion recognition using convolutional neural networks,” IEEE Transactions on Multimedia, vol. 16, no. 8, pp. 2203-2213, Dec. 2014. doi: 10.1109/TMM.2014.2360798.
|
[14] |
K. S. Ebrahimi, V. Michalski, K. Konda , et al., “Recurrent neural networks for emotion recognition in video,” in Proc. 2015 ACM on International Conference on Multimodal Interaction, Seattle, USA, Nov. 2015, pp. 467-474. doi: 10.1145/2818346.2830596.
|
[15] |
B. K. Kim, H. Lee, J. Roh , et al., “Hierarchical committee of deep cnns with exponentially-weighted decision fusion for static facial expression recognition,” in Proc. 2015 ACM on International Conference on Multimodal Interaction, Seattle, USA, Nov. 2015, pp. 427-434. doi: 10.1145/2818346.2830590.
|
[16] |
J. Lu, V. Behbood, P. Hao , et al., “Transfer learning using computational intelligence: a survey,” Knowledge-Based Systems, vol. 80, pp. 14-23, May 2015, pp. 14-23. doi: 10.1016/j.knosys.2015.01.010.
|
[17] |
Y. Huang, M. Hu, X. Yu , et al., “Transfer Learning of Deep Neural Network for Speech Emotion Recognition,” in Chinese Conference on Pattern Recognition, Chengdu, China, Nov. 2016, pp. 721-729. doi: 10.1007/978-981-10-3005-5_59.
|
[18] |
H. W. Ng, V. D. Nguyen, V. Vonikakis , et al., “Deep learning for emotion recognition on small datasets using transfer learning,” in Proc. 2015 ACM on International Conference on Multimodal Interaction, Seattle, USA, Nov. 2015, pp. 443-449. doi: 10.1145/2818346.2830593.
|
[19] |
H. Gunes , “Automatic, dimensional and continuous emotion recognition,” International Journal of Synthetic Emotions, vol. 1, no. 1, pp. 68-99, Jan.-Jun. 2010. doi: 10.4018/jse.2010101605.
|
[20] |
Z. Yu and C. Zhang , “Image based static facial expression recognition with multiple deep network learning,” in Proc. 2015 ACM on International Conference on Multimodal Interaction, Seattle, USA, Nov. 2015, pp. 435-442. doi: 10.1145/2818346.2830595.
|
[21] |
F. Sebastiani , “Machine learning in automated text categorization,” ACM Computing Surveys (CSUR), vol. 34, no. 1, pp. 1-47, Mar. 2002. doi: 10.1145/505282.505283.
|
[22] |
Y. Li, J. Tao, L. Chao , et al., “CHEAVD: a Chinese natural emotional audio-visual database,” Journal of Ambient Intelligence and Humanized Computing, vol. 8, no. 6, pp. 1-12, Nov. 2017. doi: 10.1007/s12652-016-0406-z.
|
[23] |
F. Grézl, E. Egorova, M. Karafiát , “Further investigation into multilingual training and adaptation of stacked bottle-neck neural network structure,” in Spoken Language Technology Workshop (SLT), South Lake Tahoe, USA, Dec. 2014, pp. 48-53. doi: 10.1109/SLT.2014.7078548.
|
[24] |
X. Zhang, X.-J. Wang, and H.-Y. Shum , “Finding celebrities in billions of web images,” IEEE Transactions on Multimedia, vol. 14, no. 4, Aug. 2012. doi: 10.1109/TMM.2012.2186121.
|
[25] |
H.-W. Ng and S. Winkler , “A data-driven approach to cleaning large face datasets,” in Proc. IEEE International Conference on Image Processing (ICIP), Paris, France, Oct. 2014. doi: 10.1109/ICIP.2014.7025068.
|
[26] |
X. Xiong and F. D. Torre , “Supervised descent method and its applications to face alignment,” in Proc. IEEE Conference on Computer Vision And Pattern Recognition, Portland, OR, USA, Jun. 2013, pp. 532-539. doi: 10.1109/CVPR.2013.75.
|