ZTE Communications ›› 2019, Vol. 17 ›› Issue (1): 3-11.DOI: 10.12142/ZTECOM.201901002
• Special Topic • Previous Articles Next Articles
LI Dingquan, JIANG Tingting, JIANG Ming
Received:
2018-06-09
Online:
2019-02-20
Published:
2019-11-14
About author:
LI Dingquan received the double B.S. degrees in electronic science and technology & applied mathematics from Nankai University, China in 2015, and he is currently working toward the Ph.D. degree in applied mathematics at Peking University, China. He is a member of National Engineering Lab for Video Technology. His research interests include image/video quality assessment, perceptual optimization, and machine learning. He has published papers in IEEE Transactions on Multimedia and ACM Multimedia Conference.|JIANG Tingting (ttjiang@pku.edu.cn) received the B.S. degree in computer science from University of Science and Technology of China in 2001 and the Ph.D. degree in computer science from Duke University, USA in 2007. She is currently an associate professor of computer science at Peking University, China. Her research interests include computer vision and image/video quality assessment. She has published more than 40 papers in journals and conferences.|JIANG Ming received the B.Sc. and Ph.D. degrees in mathematics from Peking University, China in 1984 and 1989, respectively. He is a professor with Department of Information Science, School of Mathematical Science, Peking University since 2002. His research interests are mathematical and technical innovations in biomedical imaging and image processing.
Supported by:
LI Dingquan, JIANG Tingting, JIANG Ming. Recent Advances and Challenges in Video Quality Assessment[J]. ZTE Communications, 2019, 17(1): 3-11.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.201901002
VQA Database | Subjective Study Method | #Reference/Distorted Videos | Score Type** |
---|---|---|---|
VQEG FR-TV Phase I [ | DSCQS | 22/352 | DMOS+σ |
VQEG HDTV [ | ACR-HR | 49/740 | Raw |
EPFL-PoliMI [ | SS/ACR | 12/156 | Raw |
LIVE [ | ACR-HR | 10/150 | DMOS+σ |
LIVE Mobile [ | SSCQE-HR | 10/200 | DMOS+σ |
CSIQ [ | SAMVIQ | 12/216 | DMOS+σ |
CVD2014 [ | SS/ACR | None/234 | Raw |
LIVE-Qualcomm [ | SS/ACR | None/208 | MOS+σ |
KoNViD-1k* [ | SS/ACR | None/1 200 | Raw |
LIVE-VQC* [ | SS/ACR | None/585 | MOS+σ |
Table 1 VQA databases with the subjective study methods, numbers of (#) reference/distorted videos and score types
VQA Database | Subjective Study Method | #Reference/Distorted Videos | Score Type** |
---|---|---|---|
VQEG FR-TV Phase I [ | DSCQS | 22/352 | DMOS+σ |
VQEG HDTV [ | ACR-HR | 49/740 | Raw |
EPFL-PoliMI [ | SS/ACR | 12/156 | Raw |
LIVE [ | ACR-HR | 10/150 | DMOS+σ |
LIVE Mobile [ | SSCQE-HR | 10/200 | DMOS+σ |
CSIQ [ | SAMVIQ | 12/216 | DMOS+σ |
CVD2014 [ | SS/ACR | None/234 | Raw |
LIVE-Qualcomm [ | SS/ACR | None/208 | MOS+σ |
KoNViD-1k* [ | SS/ACR | None/1 200 | Raw |
LIVE-VQC* [ | SS/ACR | None/585 | MOS+σ |
Figure 1. The six images are the first frame of six diferent distorted videos in LIVE-Qualcomm [16]. The distortions in these videos are at similar levels: a) NightSence, mean opinion socre (MOS)=35.7252; b) NightSence, MOS=32.2755; c) DogsOnBeach, MOS=65.9423; d) DogsOnBeach, MOS=61.2497; e) ManUnderTree, MOS=52.5666; f) ManUnderTree, MOS=57.2888. It can be seen that the perceived video quality does strongly depend on video content.
[1] | SESHADRINATHAN K, BOVIK A C . Motion Tuned Spatio-Temporal Quality Assessment of Natural Videos[J]. IEEE Transactions on Image Processing, 2010,19(2):335-350. DOI: 10.1109/tip.2009.2034992 |
[2] |
SOUNDARARAJAN R, BOVIK A C . Video Quality Assessment by Reduced Reference Spatio-Temporal Entropic Differencing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013,23(4):684-694. DOI: 10.1109/tcsvt.2012.2214933
DOI URL |
[3] | MITTAL A, SAAD M A, BOVIK A C . A Completely Blind Video Integrity Oracle[J]. IEEE Transactions on Image Processing, 2016,25(1):289-300. DOI: 10.1109/tip.2015.2502725 |
[4] |
CHIKKERUR S, SUNDARAM V, REISSLEIN M , et al. Objective Video Quality Assessment Methods: A Classification, Review, and Performance Comparison[J]. IEEE Transactions on Broadcasting, 2011,57(2):165-182. DOI: 10.1109/tbc.2011.2104671
DOI URL |
[5] | SHAHID M, ROSSHOLM A, LÖVSTRÖM B , et al. No-Reference Image and Video Quality Assessment: A Classification and Review of Recent Approaches[J]. EURASIP Journal on Image and Video Processing, 2014. DOI: 10.1186/1687-5281-2014-40 |
[6] | ITU. Radiocommunication Sector & Telecommunication Standardization Sector [EB/OL]. [2018-05-27]. https://www.itu.int/en/Pages/default.aspx |
[7] |
XU Q Q, HUANG Q M, JIANG T T , et al. HodgeRank on Random Graphs for Subjective Video Quality Assessment[J]. IEEE Transactions on Multimedia, 2012,14(3):844-857. DOI: 10.1109/tmm.2012.2190924
DOI URL |
[8] | FAN Z W, JIANG T T, HUANG T J . Active Sampling Exploiting Reliable Informativeness for Subjective Image Quality Assessment Based on Pairwise Comparison[J]. IEEE Transactions on Multimedia, 2017,19(12):2720-2735. DOI: 10.1109/tmm.2017.2711860 |
[9] | VQEG. VQEG FR-TV Phase I Database [EB/OL]. (2000)[ 2018- 05- 27]. http://www.its.bldrdoc.gov/vqeg/projects/frtv-phase-i/frtv-phase-i.aspx |
[10] | VQEG HDTV Group. VQEG HDTV Database [EB/OL]. (2009)[ 2018- 05- 27]. http://www.its.bldrdoc.gov/vqeg/projects/hdtv/hdtv.aspx |
[11] | DE SIMONE F, NACCARI M, TAGLIASACCHI M , et al. Subjective Assessment of H.264/AVC Video Sequences Transmitted over a Noisy Channel [C]//International Workshop on Quality of Multimedia Experience. San Diego, USA, 2009: 204-209. DOI: 10.1109/QOMEX.2009.5246952 |
[12] | SESHADRINATHAN K, SOUNDARARAJAN R, BOVIK A C , et al. Study of Subjective and Objective Quality Assessment of Video[J]. IEEE Transactions on Image Processing, 2010,19(6):1427-1441. DOI: 10.1109/tip.2010. 2042111 |
[13] |
MOORTHY A K, CHOI L K, BOVIK A C , et al. Video Quality Assessment on Mobile Devices: Subjective, Behavioral and Objective Studies[J]. IEEE Journal of Selected Topics in Signal Processing, 2012,6(6):652-671. DOI: 10.1109/jstsp.2012.2212417
DOI URL |
[14] | VU P V, CHANDLER D M . ViS3: An Algorithm for Video Quality Assessment via Analysis of Spatial and Spatiotemporal Slices[J]. Journal of Electronic Imaging, 2014,23(1):013016. DOI: 10.1117/1.jei.23.1.013016 |
[15] | NUUTINEN M, VIRTANEN T, VAAHTERANOKSA M , et al. CVD2014: A Database for Evaluating No-Reference Video Quality Assessment Algorithms[J]. IEEE Transactions on Image Processing, 2016,25(7):3073-3086. DOI: 10.1109/tip.2016.2562513 |
[16] | GHADIYARAM D, PAN J, BOVIK A C , et al. In-Capture Mobile Video Distortions: A Study of Subjective Behavior and Objective Algorithms[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018,28(9):2061-2077. DOI: 10.1109/tcsvt.2017.2707479 |
[17] | HOSU V, HAHN F, JENADELEH M , et al. The Konstanz Natural Video Database (KoNViD-1k) [C]//Ninth International Conference on Quality of Multimedia Experience (QoMEX). Erfurt, Germany, 2017: 1-6. DOI: 10.1109/QoMEX.2017.7965673 |
[18] | SINNO Z, BOVIK A C . Large Scale Study of Perceptual Video Quality [EB/OL]. ( 2018-03-05)[2018-05-27]. https://arxiv.org/abs/1803.01761 |
[19] | WINKLER S . Image and Video Quality Resources [EB/OL]. [ 2018- 05- 27]. |
[20] |
WINKLER S . Analysis of Public Image and Video Databases for Quality Assessment[J]. IEEE Journal of Selected Topics in Signal Processing, 2012,6(6):616-625. DOI: 10.1109/jstsp.2012.2215007
DOI URL |
[21] | WANG Z, BOVIK A C, SHEIKH H R , et al. Image Quality Assessment: From Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004,13(4):600-612. DOI: 10.1109/tip.2003.819861 |
[22] | WANG Z, LU L G, BOVIK A C . Video Quality Assessment Based on Structural Distortion Measurement[J]. Signal Processing: Image Communication, 2004,19(2):121-132. DOI: 10.1016/s0923-5965(03)00076-6 |
[23] | WANG Z, LI Q . Video Quality Assessment Using a Statistical Model of Human Visual Speed Perception[J]. Journal of the Optical Society of America A, 2007,24(12):B61. DOI: 10.1364/josaa.24.000b61 |
[24] | MOORTHY A K, BOVIK A C . Efficient Video Quality Assessment along Temporal Trajectories[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010,20(11):1653-1658. DOI: 10.1109/tcsvt.2010.2087470 |
[25] | SESHADRINATHAN K, BOVIK A C . Temporal Hysteresis Model of Time Varying Subjective Video Quality [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic, 2011: 1153-1156. DOI: 10.1109/ICASSP.2011.5946613 |
[26] |
WANG Y, JIANG T T, MA S W , et al. Novel Spatio-Temporal Structural Information Based Video Quality Metric[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012,22(7):989-998. DOI: 10.1109/tcsvt.2012. 2186745
DOI URL |
[27] | XU Q Q, WU Z P, SU L , et al. Bridging the Gap between Objective Score and Subjective Preference in Video Quality Assessment [C]//IEEE International Conference on Multimedia and Expo. Suntec City, Singapore, 2010: 908-913. DOI: 10.1109/ICME.2010.5583853 |
[28] |
PARK J, SESHADRINATHAN K, LEE S , et al. Video Quality Pooling Adaptive to Perceptual Distortion Severity[J]. IEEE Transactions on Image Processing, 2013,22(2):610-620. DOI: 10.1109/tip.2012.2219551
DOI URL |
[29] | CHANDLER D M . Most Apparent Distortion: Full-Reference Image Quality Assessment and the Role of Strategy[J]. Journal of Electronic Imaging, 2010,19(1):011006. DOI: 10.1117/1.3267105 |
[30] | VU P V, VU C T, CHANDLER D M . A Spatiotemporal Most-Apparent-Distortion Model for Video Quality Assessment [C]//18th IEEE International Conference on Image Processing. Brussels, Belgium, 2011: 2505-2508. DOI: 10.1109/ICIP.2011.6116171 |
[31] | MANASA K, CHANNAPPAYYA S S . An Optical Flow-Based Full Reference Video Quality Assessment Algorithm[J]. IEEE Transactions on Image Processing, 2016,25(6):2480-2492. DOI: 10.1109/tip.2016.2548247 |
[32] |
XUE W F, ZHANG L, MOU X Q , et al. Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index[J]. IEEE Transactions on Image Processing, 2014,23(2):684-695. DOI: 10.1109/tip.2013.2293423
DOI URL |
[33] | YAN P, MOU X Q . Video Quality Assessment Based on Motion Structure Partition Similarity of Spatiotemporal Slice Images[J]. Journal of Electronic Imaging, 2018,27(3):1. DOI: 10.1117/1.jei.27.3.033019 |
[34] | AYDIN T O, CADÍK M, MYSZKOWSKI K , et al. Video Quality Assessment for Computer Graphics Applications[J]. ACM Transactions on Graphics, 2010,29(6):1. DOI: 10.1145/1882261.1866187 |
[35] | ZHANG F, BULL D R . A Perception-Based Hybrid Model for Video Quality Assessment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016,26(6):1017-1028. DOI: 10.1109/tcsvt.2015.2428551 |
[36] |
YOU J Y, EBRAHIMI T, PERKIS A . Attention Driven Foveated Video Quality Assessment[J]. IEEE Transactions on Image Processing, 2014,23(1):200-213. DOI: 10.1109/tip.2013.2287611
DOI URL |
[37] | PENG P, LIAO D P, LI Z N . An Efficient Temporal Distortion Measure of Videos Based on Spacetime Texture[J]. Pattern Recognition, 2017,70:1-11. DOI: 10.1016/j.patcog.2017.04.031 |
[38] | ZHANG W, LIU H T . Study of Saliency in Objective Video Quality Assessment[J]. IEEE Transactions on Image Processing, 2017,26(3):1275-1288. DOI: 10.1109/tip.2017.2651410 |
[39] | HE L H, LU W, JIA C C , et al. Video Quality Assessment by Compact Representation of Energy in 3D-DCT Domain[J]. Neurocomputing, 2017,269:108-116. DOI: 10.1016/j.neucom.2016.08.143 |
[40] | FREITAS P G, AKAMINE W Y L, FARIAS M C Q . Using Multiple Spatio-Temporal Features to Estimate Video Quality[J]. Signal Processing: Image Communication, 2018,64:1-10. DOI: 10.1016/j.image.2018.02.010 |
[41] | LI Z, AARON A, KATSAVOUNIDIS I, MOORTHY A, MANOHARA M . Toward A Practical Perceptual Video Quality Metric [EB/OL]. ( 2016-06) [2018-05-27]. https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652 |
[42] | BAMPIS C G, LI Z, BOVIK A C . SpatioTemporal Feature Integration and Model Fusion for Full Reference Video Quality Assessment[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018: 1. DOI: 10.1109/tcsvt.2018.2868262 |
[43] | PINSON M H, WOLF S . A New Standardized Method for Objectively Measuring Video Quality[J]. IEEE Transactions on Broadcasting, 2004,50(3):312-322. DOI: 10.1109/tbc.2004.834028 |
[44] | MASRY M, HEMAMI S S, SERMADEVI Y . A Scalable Wavelet-Based Video Distortion Metric and Applications[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006,16(2):260-273. DOI: 10.1109/tcsvt.2005. 861946 |
[45] | GUNAWAN I P, GHANBARI M . Reduced-Reference Video Quality Assessment Using Discriminative Local Harmonic Strength with Motion Consideration[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008,18(1):71-83. DOI: 10.1109/tcsvt.2007.913755 |
[46] | ZENG K, WANG Z . Temporal Motion Smoothness Measurement for Reduced-Reference Video Quality Assessment [C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Dallas, USA, 2010: 1010-1013. DOI: 10.1109/ICASSP.2010.5495316 |
[47] | WANG M M, ZHANG F, AGRAFIOTIS D . A very Low Complexity Reduced Reference Video Quality Metric Based on Spatio-Temporal Information Selection [C]//IEEE International Conference on Image Processing (ICIP). Quebec City, Canada, 2015: 571-575. DOI: 10.1109/ICIP.2015.7350863 |
[48] | LE CALLET P, VIARD-GAUDIN C, BARBA D . A Convolutional Neural Network Approach for Objective Video Quality Assessment[J]. IEEE Transactions on Neural Networks, 2006,17(5):1316-1327. DOI: 10.1109/tnn.2006.879766 |
[49] | ZHU K F, BARKOWSKY M, SHEN M M , et al. Optimizing Feature Pooling and Prediction Models of VQA Algorithms [C]//IEEE International Conference on Image Processing (ICIP). Paris, France, 2014: 541-545. DOI: 10.1109/ICIP.2014.7025108 |
[50] |
MITTAL A, SOUNDARARAJAN R, BOVIK A C . Making a “Completely Blind” Image Quality Analyzer[J]. IEEE Signal Processing Letters, 2013,20(3):209-212. DOI: 10.1109/lsp.2012.2227726
DOI URL |
[51] |
MA L, LI S N, NGAN K N . Reduced-Reference Video Quality Assessment of Compressed Video Sequences[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012,22(10):1441-1456. DOI: 10.1109/tcsvt.2012. 2202049
DOI URL |
[52] | BAMPIS C G, GUPTA P, SOUNDARARAJAN R , et al. SpEED-QA: Spatial Efficient Entropic Differencing for Image and Video Quality[J]. IEEE Signal Processing Letters, 2017,24(9):1333-1337. DOI: 10.1109/lsp.2017.2726542 |
[53] | ZHU K F, LI C Q, ASARI V , et al. No-Reference Video Quality Assessment Based on Artifact Measurement and Statistical Analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015,25(4):533-546. DOI: 10.1109/tcsvt.2014.2363737 |
[54] | ZHANG F, LIN W S, CHEN Z B , et al. Additive Log-Logistic Model for Networked Video Quality Assessment[J]. IEEE Transactions on Image Processing, 2013,22(4):1536-1547. DOI: 10.1109/tip.2012.2233486 |
[55] | ZHAO T S, LIU Q, CHEN C W . QoE in Video Transmission: A User Experience-Driven Strategy[J]. IEEE Communications Surveys & Tutorials, 2017,19(1):285-302. DOI: 10.1109/comst.2016.2619982 |
[56] | ROMANIAK P, JANOWSKI L, LESZCZUK M, et al. A no Reference Metric for the Quality Assessment of Videos Affected by Exposure Distortion [C]//IEEE International Conference on Multimedia and Expo. Barcelona, Spain, 2011: 1-6. DOI: 10.1109/ICME.2011.6011903 |
[57] |
VALENZISE G, MAGNI S, TAGLIASACCHI M , et al. No-Reference Pixel Video Quality Monitoring of Channel-Induced Distortion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012,22(4):605-618. DOI: 10.1109/tcsvt.2011.2171211
DOI URL |
[58] | CUI Z X, JIANG T T. No-Reference Video Shakiness Quality Assessment [M] //CUI Z X, JIANG T T. eds. Computer Vision-ACCV 2016. Cham: Springer International Publishing, 2017: 396-411. DOI: 10.1007/978-3-319-54193-8_25 |
[59] | CHEN C, IZADI M, KOKARAM A . A Perceptual Quality Metric for Videos Distorted by Spatially Correlated Noise [C]//ACM on Multimedia Conference. Amsterdam, The Netherlands, 2016: 1277-1285. DOI: 10.1145/2964284.2964302 |
[60] | GHADIYARAM D, CHEN C, INGUVA S , et al. A No-Reference Video Quality Predictor for Compression and Scaling Artifacts [C]//IEEE International Conference on Image Processing (ICIP). Beijing, China, 2017: 3445-3449. DOI: 10.1109/ICIP.2017.8296922 |
[61] | XU J T, YE P, LIU Y , et al. No-Reference Video Quality Assessment via Feature Learning [C]//IEEE International Conference on Image Processing (ICIP). Paris, France, 2014: 491-495. DOI: 10.1109/ICIP.2014.7025098 |
[62] | YE P, KUMAR J, KANG L , et al. Unsupervised Feature Learning Framework for No-Reference Image Quality Assessment [C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 1098-1105. DOI: 10.1109/CVPR.2012.6247789 |
[63] | MEN H, LIN H H, SAUPE D . Empirical Evaluation of No-Reference VQA Methods on a Natural Video Quality Database [C]//Ninth International Conference on Quality of Multimedia Experience (QoMEX). Erfurt, Germany, 2017: 1-3. DOI: 10.1109/QoMEX.2017.7965644 |
[64] |
NARVEKAR N D, KARAM L J . A No-Reference Image Blur Metric Based on the Cumulative Probability of Blur Detection (CPBD)[J]. IEEE Transactions on Image Processing, 2011,20(9):2678-2683. DOI: 10.1109/tip.2011.2131660
DOI URL |
[65] |
SAAD M A, BOVIK A C, CHARRIER C . Blind Prediction of Natural Video Quality[J]. IEEE Transactions on Image Processing, 2014,23(3):1352-1365. DOI: 10.1109/tip.2014.2299154
DOI URL |
[66] | MANASA K, CHANNAPPAYYA S S . An Optical Flow-Based No-Reference Video Quality Assessment Algorithm [C]//IEEE International Conference on Image Processing (ICIP). Phoenix, USA, 2016: 2400-2404. DOI: 10.1109/ICIP.2016.7532789 |
[67] | ZHU Y, WANG Y F, SHUAI Y . Blind Video Quality Assessment Based on Spatio-Temporal Internal Generative Mechanism [C]//IEEE International Conference on Image Processing (ICIP). Beijing, China, 2017: 305-309. DOI: 10.1109/ICIP.2017.8296292 |
[68] | LI X L, GUO Q, LU X Q . Spatiotemporal Statistics for Video Quality Assessment[J]. IEEE Transactions on Image Processing, 2016,25(7):3329-3342. DOI: 10.1109/tip.2016.2568752 |
[69] | LI Y M, PO L M, CHEUNG C H , et al. No-Reference Video Quality Assessment with 3D Shearlet Transform and Convolutional Neural Networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016,26(6):1044-1057. DOI: 10.1109/tcsvt.2015.2430711 |
[70] | SHABEER P M, BHATI S, CHANNAPPAYYA S S . Modeling Sparse Spatio-Temporal Representations for No-Reference Video Quality Assessment [C]//IEEE Global Conference on Signal and Information Processing (GlobalSIP). Montreal, Canada, 2017: 1220-1224. DOI: 10.1109/GlobalSIP.2017.8309155 |
[71] | ZHU Y, GUNTUKU S C, LIN W, GHINEA G, REDI J A , Measuring Individual Video QoE: A Survey, and Proposal for Future Directions Using Social Media[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2018,14(2s):30. DOI: 10.1145/3183512 |
[72] | CHEN Z B, ZHOU W, LI W P . Blind Stereoscopic Video Quality Assessment: From Depth Perception to Overall Experience[J]. IEEE Transactions on Image Processing, 2018,27(2):721-734. DOI: 10.1109/tip.2017.2766780 |
[73] | NARWARIA M, PERREIRA DA SILVA M, LE CALLET P . HDR-VQM: An Objective Quality Measure for High Dynamic Range Video[J]. Signal Processing: Image Communication, 2015,35:46-60. DOI: 10.1016/j.image.2015. 04.009 |
[74] | ZHANG Y X, WANG Y B, LIU F Y , et al. Subjective Panoramic Video Quality Assessment Database for Coding Applications[J]. IEEE Transactions on Broadcasting, 2018,64(2):461-473. DOI: 10.1109/tbc.2018.2811627 |
[75] | BAI C, REIBMAN A R . Image Quality Assessment in First-Person Videos[J]. Journal of Visual Communication and Image Representation, 2018,54:123-132. DOI: 10.1016/j.jvcir.2018.05.005 |
[76] | LING S Y, LE CALLET P . Image Quality Assessment for Free Viewpoint Video Based on Mid-Level Contours Feature [C]//IEEE International Conference on Multimedia and Expo (ICME). Hong Kong, China, 2017: 79-84. DOI: 10.1109/ICME.2017.8019431 |
[1] | ZHOU Yingjie, ZHANG Zicheng, SUN Wei, MIN Xiongkuo, ZHAI Guangtao. Perceptual Quality Assessment for Point Clouds : A Survey [J]. ZTE Communications, 2023, 21(4): 3-16. |
[2] | YIN Yujie, CHEN Zhang. Perceptual Optimization for Point-Based Point Cloud Rendering [J]. ZTE Communications, 2023, 21(4): 47-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||